AccuracyOfFiniteContinuedFractionApproximationsForlirrat
lonals

Let « e R\Q be an irrational, let & be its unique associated regular continued
fraction of the form & = [bg; by, by, ... ], and let A, /B, =[bg; by, by, .. , by]
denote its nth convergent. The degree of accuracy of the approximation of « by
A, /B, satisfies

1 An 1
— <o -—|=
Bn(Bn + Bni1) Bnl  BnBni1
foralln=0.

AdamsMetricalTheorem

Let @ and B be irrationals with O <, B8< 1,
< 1
s=K —
n=1 a,
be the regular continued fraction of «,
< 1
&H=K —
n=1 b,
be the regular continued fraction of 3, and let a,,, B, be the respective continu’
ants. Define

¥,(n, @, B) = number of integers 0 < j <n — 1suchthata;j,; = by,

oy Qjpy =Dy, and @y4ji1 > Braa

¢,(n, @, B) = number of integers 0 < j < n — v such thata;,; = by,

oy Qjpy =Dy, and @y, ji1 > Brea

where v, n, and j are non-negative integers. Then for almost all o the following
identities hold:

1 In(B + 1)
lim — -1y, (n, a, B)=
nmn;()w(am )

1 In(B + 1)
lim — -1 ¢,(n, @, B) = )
nmng()¢(am 2

AlgebraicindependenceCriterionForContinuedFractions
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Let o) = [bgj); b, by, .. | be regular continued fractions for j=1, 2, .., tand
let their nth convergents be denoted Aﬁj)/Bﬁj). Then the collection oV, .. , @ is

algebraically independent if there exits a bounded function k: Z* - Z* such
that (i) In(bf, ,,,,)/In(B}) is undbounded for all ne Z* and (ii) For j=2, 3, .. , t,

by by +1
O<Iiminf[ ]<land0<|imsup[ ]<1

—00 (j_l) (j_l)
n bn n

N—oo

AlgebraicindependenceOfNNumbersl

Let &, i=1, 2, .., nbe nirrational numbers with regular continued fraction
expansion

o 1
&=hio+ K —

=1 by j
with bj j € Z* and convergents A, /Bjn.
Letr>1and let {nj}‘j’il be a sequence of increasing positive integers and let f(n)
be an integer-valued function for integer argument n and lim,_,., f(n) = co.

If there exists a subsequence {n;}{2; such that for all i=1, 2, ..
(i)

bi,nj+1 = Bl,:'h

and

Bj-1n =r""Bjp,

and

f(i
Bj—l,nﬁ-l =r ® Bj,l"li+lv

then the & are algebraically independent over Q.

AlgebraicindependenceOfNNumbers?2
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Let &, i=1, 2, .., nbe nirrational numbers with regular continued fraction
expansion

< 1
&=bio+ K —
=1 bi,j

with bi,j ezZ".
Letr>1,7>1,and {nj}‘j’il be a sequence of increasing positive integers and
f(n) be an integer-valued function for integer argument n and lim,_, f(n) = co.

If there exists a subsequence {n;}{2, such that foralli=1, 2, .. and
j=2,3,..,n

bl,ni = b.ini
and
bj-1,n = bjn,
and

g()
bj,ni+1 = bl,niu

then the &; are algebraically independent over Q.

AlgebraicindependenceOfNNumbers3

Let ¢ be an irrational number with regular continued fraction expansion

< 1
f = bo + K —
=1 b;
with unbounded partial quotients b;. If there exist n positive integers g; > 2,
i=1,2,. ,n,thenthe nnumbers x;,i=1, 2, .. , n.
X; = (gl _ 1) Zgi—UfJ
j=1

are algebraically independent over Q.

AlgebraicindependenceOfTwoContinuedFractions
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Let £ and 5 be two continued fractions

<1
&= bg) +K —
=1 y©

i

<1
n= bg') +K —
j=1

i

with b}, bj” € Z*.
Letr>1, {nj}‘j’il be a sequence of increasing positive integers, f(n) be an inte’
ger-valued function for integer argument n, and limj_,., f(nj) = oo.
Thenifforallnez*
by f(n-1)
— = bg’) > (bf_)l) ,
r
¢ and 7 are algebraically independent over Q.

AlgebraicindependenceOfTwoNumbers
Let ¢ be an irrational number with regular continued fraction expansion

< 1
é: = bo + K —.
=1 b;
If there exist two positive integers g; = g, > 1 such that forall j=1
In(g1)

In(g2)
then the two numbers x; and x»

Xy = Z(gl -1) ngj ¢
i=1

by=1+2

Xp = Z(gz -1) ngj ¢
i=1

are algebraically independent over Q.

AlgebraicNumberContinuedFractionTermBounds
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Let £ be an algebraic number with minimal polynomial P(x) of degree d with
regular continued fraction expansion

© 1
f=bo+K—
k=1 by

with A, /B, the sequence of its convergents. Then there exists an m > 0 such
that for alln>m

b <IP' (£)I BY, ;.

Algorithm:AyresBackwardMethod

Given the partial denominators b, of a regular continued fraction
N

E=Dbo + }:(1 é

the value of ¢ can be computed by letting

Pn = by

and iterating

Pn=bnPns1+Pns2

fromn=N-1ton=0. The value of ¢ is then given by

Algorithm:AyresForwardMethodRationalNumber

Given a rational number r = p/q, the partial denominators b, of the finite
regular continued fraction

N1
f = bo + K —_—
n=1 bn
of r can be computed by setting P_; = p, Po = q and iterating
b, — rnlJ
Pn
I:’n+1 = Pn—l - bn Pn
starting with n = 0 until Py =1 and then taking by = Pyn_1.

Algorithm:AyresForwardMethodSurd
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Given an irrational square root VN, its continued fraction
E=Dbg+ nI=<1 i

can be calculated by iterating

An= bn—l Bn-1 +Cn-2

Bn= bn—l Cn-1+ Dn_2,

where
Ch = Ap,mod B,
A
=]
Bn
D, =B, modC,

until A, =2 m and B,, = k when the process repeats where N = m? + k.

Algorithm:AyresMethodLinearDiophantineEquations

Let a, ¢, d, X, y be integers where
ged(@, c)=1
ax=cy+d.
Then one can find a solution for x and y by computing the continued fraction
for a/c, finding its representation as
N
E=ap+ nI=<1 :—n

where N is even (for odd representations can be extended with ay = 1) and
taking the numerator and denominator of

N1
p/a=ao+ K —
n=1 a,
yields a solution to
ap=cq+1

andsoonecansetx=dpand y=dqg.

Algorithm:BackwardAlgorithm
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Let ¢ be the finite continued fraction of a rational number x

n a.
§=b0+K—J.

i=1 b;
The backward algorithm calculates the value of ¢ through the recurrence
relation

fork=n,n-1, .., 1, and the value is £ =bg + Q;.

Algorithm:BackwardAlgorithmRegular

Let & be the finite regular continued fraction of a rational number x

ni1
§=b0+K—.

=1 b;
The backward algorithm calculates the value of ¢ through the recursion relation
Qn= bn

fork=n,n-1, .., 1, and the value is ¢ =bg + Q;.

Algorithm:ChisholmContinuedFractionSolutionOfRiccatiOD
E
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The general Riccati differential equation
Y/ (X) = ag(X) +81(X) Y(X) + 22(X) y(x)?
can be transfomed into reduced form
2/(x) = bo(x) - 2(x)?*
using the transformation

ax(X) (@1(X) + 2 (X)) + &z’ (x)

y(x) = - . :
2 ax(x)

where

bo(x) = (22" (x) + 2a1(x) ax(x) ap'(X) + 33" (X)* +

4 ay(x)

a1(x)? 82(X)% — 2 a(X) (32(X) (a1'(X) + 2 8g(X) ax(X))).
The solution of the reduced Riccati equation
2(x) = bo(x) - 2(x)*
can be expressed as a continued fraction in the form

0o b — CZ
Z(X)=C+ K 1 <0 ,
k=0 5 bi(¥) (bk(¥) = a?) + 2C

where C is the differential equation's constant of integration. The b, (x) obey
the following recursion relation:

Chy_,(x) 3by_,(x)? by_, (X)?
+ - .
b1 -C* 4 (by_1(x) - C2)2 2 (by_1(x) - C?)

b(X) = by_1(X) +

Algorithm:CoefficientsOfStieltjesFractionForBinetsFunction

Let J(2)=InT'(2))+z—-(z-1/2)In(z) — 1/2In(2 ) be the Binet function. Then
the coefficient a, of its S-fraction

< a
J(2)= K &

k=0 Z

obey the following recurrence relation:

dg = Cp
p-1 )
3 8j2moa2 Cir2 [U] (dlp)
j=0
adp =
P o1
o [1aj
j=0
where
0o =Co

Op =UQp-1 —ap-10p-2



L2 p+2

p+1)2p+2)

Cp=

and [u"] (q) denotes the coefficient of u" in the polynomial g.

The a, are all rational numbers and the first are:

1
dg = —
12
1
a; = —
30
53
dy = ——
210
195
azg=——
371
22999
g =
22737
29944523
ag=——
19733142
109535241009
g =
® T 48264275462
29404527 905795295658

a7z =
! 9769214287853155785
455377030420113432210116914702

A =
’ 113084 128923675014537 885725485
26370812569397719001931992945645578 779849

5271244267917 980801 966553649147 604697 542
o =
152537496 709054 809881638897 472985990866 753853122697 839

24274291553105128438297398108902195365373879212227726
an =
100043420063 777451042472529806 266 909090824649 341814868 .
347109676190691/
13346384670164266280033479022693768890138348905413621 "
178450736182873
app =
76505453770729679546978925279947 999 751 358 882390333162 "
643791755779220628608937 055725/
8462374626124 882026566 154 328209420711352946 133738527 "
825697131889768847210043866097.

Algorithm:ContinuedFractionExpansionByExcess

Results.nb

9
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Let x be a real number. Then the by-excess continued fraction expansion
N -1
f = bo + K —
i=1 b;
(where N is possibly infinity) can be calculated through the repeated applica’
tion of the generalized Gauss map 7: [0, 1 - [0, 1

1 1
el
x| x
through
bo =X
1
b { _ }
7(x)

Algorithm:ContinuedFractionExpansionRegular

Let x be a real number. Then the regular continued fraction expansion
N1
f = bo + K —
=1 b;
(where N is possibly infinity) can be calculated through the repeated applica’
tion of the Gauss map : [0, 1 - [0, 1

1 |1
e[}

X Lx
through
bo = | X]

1
o] |
TI(X)

Algorithm:EulerMindingSummationAlgorithm
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Let ¢ be the finite continued fraction of a rational number x
n ai
f = bo + K —J
i=1 b;
The forward algorithm calculates the value of ¢ through the recursion
B..=0
Bo=1
Bk = by Bx_1 +ax By

and is given as

K
) jg(—a,—)

§=bo - :
’ g Byk-1 B

Algorithm:EulerMindingSummationAlgorithmRegular

Let ¢ be the finite regular continued fraction of a rational number x
n1

&= bo + K .
=1 b;

The forward algorithm calculates the value of ¢ through the recursion

B.,=0

Bo=1

By = by By_1 + By

and is given as

n (—l)k

&=bo - :
gBk—l Bk

Algorithm:FareyProcess

Start with a Farey pair a/b and c/d and take their mediant Mg. Inserting Mg

into the Farey interval o = [a/b, ¢/d] yields two Farey subintervals

I% =[a/b, Mg] and If = [Myp, ¢/d], thus completing step one. For step two, create
the mediants M} and M2 of 1} and 12, respectively, whereby four Farey subinter"

vals I%, je {1, 2, 3, 4}, result. Continuing inductively, at the kth step, there will

be 2 mediants Mli, one for each of the 2X Farey subintervals I}, j=1, 2, .. , 2%.

Algorithm:FareyProcessZeroed



12

Results.nb

Given a particular number « lying in a Farey interval, a modification of the
Farey process can be made in which one “zeroes in on «”’by dividing said
interval into Farey subintervals. This is done by inserting the mediant into the
original Farey interval, whereby two subintervals are created, and considering
only the resulting subinterval containing «. Then, the process is repeated
inductively until approximations suitably close to « are obtained.

More precisely, let @ be a number lying in some Farey interval I =[a/b, c/d].
Form the mediant Mg = (a +¢)/(b + d) and insert it into lg, resulting in two
subintervals 13 = [a/b, Mo] and If = [Mp, ¢/d]. At this junction, a I{ for

je {1, 2}. Assuming a Ii, form the mediant M, = (a + ¢g)/(b + dp) where
co/do = Mg and consider the resulting Farey intervals I% =[a/b, M{] and

I% =[My, Mg]. Continue inductively, whereby at the kth iteration there exist

two Farey subintervals I, and 12_, with a e Ilj(, je {1, 2}, and M, the mediant
j

of I,..

If @« = p/qis rational in lowest terms, then this process terminates and «

appears as an endpoint of a Farey pair at some stage of the process. If instead «
is irrational, then this process can be continued ad infinitum until a rational
approximation within a specified error bounds is obtained.

Algorithm:FastContinuedFractionAlgorithm



The fast continued fraction algorithm is a modified version of the zeroed Farey
process in which some information calculated as part of the latter is discarded
in exchange for asymptotic speed. In particular, note that for a given x
(generally irrational), the zeroed Farey algorithm performs a “zeroing in””
process by way of creating a series of shrinking Farey intervals containing x,
each of whose endpoints are recorded as best left and right rational approxima
tions to x. The fast continued fraction algorithm gains computational speed by
recording only the last such “zeroing in”’when successive shrinkings occur on
one side of x or the other.

To be more precise: Start with an irrational number x in some Farey interval
[a/b, c/d]. In the zeroed Farey process, it may happen that a succession

ai /by, ax/by, ..., ax/by of iterations occur to zero in on x from (without loss of
generality) the left; in the slow algorithm, all 2 k of these integers would be
recorded whereas in th fast algorithm, computational methods are applied to

determine only the kth values a, b, so as to eliminate computational overhead.

As part of the fast algorithm, a “Stopping index”’s is computed and maintained
to provide a guaranteed stopping point to the otherwise-infinite algorithm.

Here are the tools needed to implement the fast algorithm. Again, x is assumed
throughout to be an irrational number lying in the Farey interval [a/b, ¢/d].

(i) For each k, ay, /by, is the mediant of the interval [a, /by, c/d]. Therefore,
one can compute a,, b,.: a,=a+kec, by=b+kd.

(ii) Consider the function f (z) =(a+zc¢)/(b + zd) and note that the real num’
ber y for which f (y) = x satisfies y = (xb —a)/(c — x d). See the pseudo-code
below.

(iii) The stopping index s is defined by s=y].

(iv) Redefine y recursively: y=1/(y -5s).

The following pseudocode describes this process in more explicit detail. The
variables need are a, b, ¢, d, y, s, a_s, and b _s. Further, x as above represents
the number being approximated and n a positive integer denotes some pre".
scribed number of iterations to perform.

Loop {
s = floor (y);

as=a+ sc;
b s=b+sd;
Print:s,a s, b s;

a=c;
b=d;
c=as;
d=Db_s;
y=1/(y -9);

} Until {s =n}

Results.nb
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Algorithm:ForwardAlgorithm

Let & be the finite continued fraction of a rational number x

n aj
f = bo + K —.
i=1 bj
The forward algorithm calculates the value A, /B, of ¢ through the recursion
relation
Aq=1
A =Dby A1 +a Ao
B.;=0
Bo=1

By = by Bk_1 + ax By_o,

and the value is ¢ =bg + A,/Bn.

Algorithm:ForwardAlgorithmRegular

Let ¢ be the finite regular continued fraction of a rational number x

n1
f = bo + K —.
=1 b;
The forward algorithm calculates the value A, /B, of £ through the recursion
relation
A=1
A =Dy A + Az
B..=0
Bo=1

By = by Bx_1 + B2,

and the value is ¢ =bg + A, /Bn.

Algorithm:GosperRegularContinuedFractionArithmetic

Given two regular continued fraction expansions for real numbers A and B



k=1 by
(with np and/or ng possibly «), an arithmetic operation f (addition, subtrac™.

tion, multiplication, and division) can be carried out on the sequences of partial
denominators {ak}::io and {bk}Eio directly to obtain the partial denominators ¢,

of
Nc 1
C=f(AB=co+K —.
k=1 Cy

More generally, the partial denominators c, of the expression
aAB+bA+cB+d

C=1f(A B)=
eAB+fA+gB+h

(with the special cases for two continued fractions

addition a=0]b=1]c=1 |d=0]e=0]|f=0]|g=0|h=1
subtraction a=0]b=1|c=-1]d=0]e=0]f=0|g=0|h=1
multiplication [a=1|b=0]c=0 |d=0]e=0|f=0]|g=0]|h=1
division a=0]|b=1]c=0 |d=0]e=0]|f=0]|g=1|h=1

for the basic arithmetic operations)

for given rational expressions a, b, c, d, e, f, g can be computed directly from
the partial denominator sequences {a}.", and {by}%,.

Observing that the expression

aAB+bA+cB+d

eAB+fA+gB+h

(i) under the substitution A - a, + 1/A changes as

a(ak+%)8+b(ak+%)+CB+d (c+aa)AB+d+ba)A+aB+b

e(ak+%)B+f(ak+%)+gB+h_(9+eak)AB+(h+fak)A+EB+f'
(ii) under the substitution B—- b, + 1/B

aA(bk"'%)"'bA"'c(bk"'é)"'d (b+ab)AB+aA+(d+ch)B+c

eA(bk+§)+fA+g(bk+§)+h_ (f+eb)AB+Ae+(h+gb)B+g’
(i) and
1 eAB+fA+gB+h

M—ck B (@a-ec)AB+(b-fc)A+(c—gc)B+(d-hcy)
e AB+f A+gB+h

shows the shape invariance of the expression
aAB+bA+cB+d

eAB+fA+gB+h

under the operations (i), (ii), and (iii).

The two substitutions A - a,+1/A and B - b, + 1/B can be thought as using
the kth partial denominators and denoting the remainders by the symbolic
variable A or B.

Results.nb
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The operation (iii) can be interpreted as extracting the kth digit ¢, from F(A, B).

Observing that substituting A - a, + 1/A and B - by, + 1/B repeatedly (a,, and
b, are positive integers from the regular continued fraction expansions of A and
B) into an expression of the form

aAB+bA+cB+d

eAB+fA+gB+h

and denoting the result of this substitution by
g({aa by Cv dy ey f! g}1 {aka ak+l! ey ak+m}1 {bjl bj+11 ey bj+n})

and taking into account that the remainders A and B are bounded from below
by 1, allows to bound this expression from above and below. For sufficiently
large m and n, there exists an integer w such that

w= g({a! b! (o d1 €, fy g}: {ak! ak+]_| o ak+m}1 {bjy bj+1! ey b]+n}) <w+1.

Then w is the next partial denominator of the regular continued fraction expan’
sion of f (A, B).

So, applying (possibly multiple times) (i) and (ii) and then (iii) repeatedly,
allows to extract a continued fraction digit from F(A, B). This process can be
repeated to obtain the sequence of partial denominators {ck}ﬂgo.

Algorithm:HurwitzExpansion

Let z be a complex number. Then the Hurwitz continued fraction expansion
N1
z=hy+ K —
=1 b;
(where N is possibly infinity) can be calculated through the repeated applica’
tion of the map

1 |1
r@:——{—

¢ g
through
bo=|_Z

1
b,:{ =

7(2)

Here, |z denotes rounding to the nearest Gaussian integer.

Algorithm:JacobiPerronAlgorithm
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Given a list of d (d > 1) real numbers {a1, @3, .. , ag4}, the Jacobi-Perron algo’
rithm calculates a multidimensional continued fraction that simultaneously
approximates the given real numbers.
Start setting:
ago)zaiforlsisd.
Define
a” =|a\”|forl<i<d-landn=1.
Recursively define

1

a(ln—l) B a(ln—l)

n _
ay =
o =al’ (afl;" - alliV)for2 i <d.
Then the simultaneous approximations

()
aj ~ —forl<i=<d

q(n)

can be obtained from
An=1g,1-B1-Bz-.. ‘Bng
where

00 . 0 1

10. 0 a
Bn=[01 . 0 ay

(n
00 . 14

and
q(n—d) q(n—d+1) q(n—l) q(n)
(n—d) (n—d+1) (n-1) (n)
P1 P1 P1 P1
_ (n—d) (n—-d+1) (n-1) (n)
An=| p3 P2 P2 p2- |
(n—d) (n—-d+1) (n-1) (n)
Py Py w Py Py

If o{™ € Z* for some n and i the algorithm is interrupted and continued with
the remaining o!".

Algorithm:LangTrotterAlgorithm
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The Lang-Trotter algorithm is a method of finding the continued fraction
expansion of irrational roots of certain classes of polynomials by way of con™.
structing a series of related polynomials, each having a few very specific proper
ties, the roots of which yield the partial quotients for the aforementioned
continued fraction. Among other benefits, the Lang-Trotter algorithm has the
boasts the ability to find the partial quotients to with full precision and no
rounding errors due to its utilization of strictly integer arithmetic.

To begin, start with a polynomial p,(x) of degree d which has positive leading
coefficient and a single, simple irrational root y, > 1. The process to construct
the first related polynomial pn,1(x) is as follows. Let a, = | y,| denote the
integer part of y, and note that by definition, a, is the greatest integer for
which p, (an) < 0. From this, define the polynomials Q,, (x) =P, (x + a,) and
Pns1 (X) = —x? Qq (x71). Because a, = | ynJ, it follows that Q, has a single root at
the value y, — a, € (0, 1). Moreover, because the root of P, is the reciprocal of
the root of Q,, Pn,1 again has a single root y,,., which itself is simple, irra.
tional, and greater than 1 and which has the form y,.1 = (Y, — a,) . Also note

that because the constant term of Q, is negative, the leading coefficient of P,
will again be positive, whereby it follows that P,,,1 has all the properties
assumed for P,,.

Therefore, the above process can be repeated, and so beginning with a polyno’
mial P; with the properties assumed initially, an infinite sequence

P1 (X), P2 (x), .. of polynomials can be formed which all have those assumed
properties and which have roots y;, y», .. . Subsequently, the sequence

ai, ap, .. Iisthe sequence of partial quotients in the continued fraction expan™.
sion ¢&; of y; where a, =|yn]. Moreover, because the above process consists
only of integer addition and multiplication, it follows that no rounding errors,
etc., are introduced throughout so that full precision results are obtained.

Algorithm:ModifiedLentAlgorithm
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be a generalized continued fraction, a, be the partial numerator of &, b, be the
partial denominator of ¢, ¢, be a sequence, d, be a sequence, and f, be a

sequence. Given
Co =ho
do=0

A1+n
Ciin = b1+n +
Cnh
d 1
1+n — a1.n
dn

Diin +

f1+n =C14n d1+n fn
then
&= lim f,.

Nn—oo

Algorithm:NearestintegerContinuedFractionExpansion

Let £ be a real number. Then the nearest integer continued fraction expansion
N g
X=¢&p bo + K —J
I=1 b
(where N is possibly infinity), ¢; € {-1, 1}, and b; € Z* can be calculated
through the repeated application of the map r: [-1/2,1/2->[-1/2,1/2

sgn(x) sgn(x) 1
T(X) = - { + —J
X X 2
7(0)=0
through
1
bo = {X + — ‘
2
(b3
=sgn||X+ —
&0 =S¢ 5

&j=sgn(r"(x))
sgn(t"(x 1
o - L0

) 2]
Here bj=2forn>=1and bj+¢j,1 =2 forn=1.
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Algorithm:OstrowskiNumberSystemintegers

Let £ be the positive irrational number 0 < £ < 1 with regular continued fraction

expansion
< 1

¢=K—
=1 bj

and convergents A, /By.

For every irrational number ¢ with 0 < ¢ < 1, any integer n can be uniquely

written as
m
N = ch Bk—l
k=1
where
O<cy<b; -1

O<cy<byfork=2

Ck =0if €1 =Dbyya.

The Ostrowski digits ¢, can be obtained recursivley in the following manner:
1) Determine m such that By,,.1 > N.

2) Define the ¢ recursively starting with

el

Om =N —-cCn Bp

and for k < m through
\‘6k+1‘|
Ck =
Bm

0k = 041 — Ck Bi

Algorithm:PippengerContinuedFraction
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Any real number 1 < ¢ < 2 can be expressed as a Pippenger continued fraction
1

1
ity —
[ _1+t2(1+ 71+t13(.. )))

where t, € Z* and t, = 2. Then t, can be calculated recursively as long as y, > 1
through
Yo=¢

Zyi1

Yk+1 =
tk+l

E=1+

1
Yk—1
te =Lzl

ki1 =1+

Algorithm:ProgressiveRutishauserQD

The reciprocal of the formal power series

f(z2)= de z
k=0

with ¢, € C can be converted into a regular C-fraction
1 O agz

f@ 0 ki 1

with a, € C\O for k= 1.

Assuming the C-fraction exists, the a, are given by
dq fork=1

ay = —qﬁ)z fork/2ez
—ely, fork-1)/2ez.

The coefficients qf(') and eﬂ) can be recursively calculated through

esP=0
© _ d2
el -
dy
O _ dy
Q1" =——
do
gD
I+1 _
el = —— e Pfork=-I
®
ol

g =g e el fork=I.
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Algorithm:RosenShallitAlgorithm



The Rosen-Shallit algorithm is a procedure for identifying and computing the
complete list of roots of a polynomial with integer coefficients. The algorithm
itself is itself a composition of other algorithms and theorems including Uspen’
sky 3 algorithm, Newton 3 method, Vincent 3 theorem, and others. The break™.
down of the procedure is as follows.

To begin, start with a polynomial p(x) with real coefficients and let e > 0 be an
error tolerance for the approximations of the irrational roots of p. The steps for
the algorithm are:

1. Test p(x) for rational roots and their multiplicities using the rational root
theorem. Factor them out and consider the remaining polynomial p(x) whose
real roots are all irrational.

2. Use Uspensky 3 algorithm to test p(x) for multiple roots and use the algo™.
rithm to factor p so that p (x) = ag Xq X3 --- X{ where ag €R is a constant and
where, fori=1, 2, .., r,

Xi = (X =by) (x =bp) - (x = by)

is a polynomial whose simple roots by, by, .. , bj are all the roots of multiplicity
of i of p(x).

3. Use Vincent 3 theorem to separate the roots by ;, by ,, .. , by j of each factor
Xg of p, k=1, 2, .. , r. Using the transformation defined in the theorem, find
for each by ; a polynomial f)k'j(x) having by j as its only positive root.

4. For each f)k'j(x), use Newton 3 method to find an initial approximation for the

root by ;. Given this initial approximation, use the Lang-Trotter algorithm to

compute the partial quotients of the approximants A, /B, of the continued
fraction representation & ; of by ;.

5. Conclude the process at the nth approximant A, /By, whenever 1 /B3 <e.

6. Find any negative roots of p(x) by performing the above process on the
polynomial p(—x).

The authors make note of the fact that very little is known about the computa™.
tional efficiency of their algorithm, noting only that smaller values for e yields
slowing of computation; they also note that the accuracy of their output agrees
with that of Vincent on comparable polynomials. Theoretically, the inclusion of
the Lang-Trotter algorithm, which itself is computationally more efficient than
other, more brute-force methods, improves both computational efficiency and
accuracy due to the lack of roundoff error involved. Moreover, the inclusion of
Newton 3 method reduces the number of computations needed for step 4 by
requiring each iteration to test only three integers for each polynomial 3 sign
change versus testing ym + 1 integers for the brute force alternative described in

their paper. Here, y, is the root of the polynomial P, formed in the mth step of
the Lang-Trotter algorithm.

Results.nb
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Algorithm:SchmidtExpansion

Let £ be a complex number with Im(¢£) = 0. The Schmidt continued fraction
expansion

&=M1-Mz-.. -My
(where N is possibly infinity) with complex 2x2 matrices
Mk €{Vq, Vo, V3, C, Eq, Ey, E3} where

=()

1 0
E, =
1(1—1'1')
1 —1+i
E, =
2 (0 i )

i O
E3:(o 1)

can be calculated through the repeated application of the map
t:{{z:ze CAIm(2) = 0}, {0, 1}, {V1, Vo, V3, C, Ey, B, E3}} >

{z:zeCAIm(z)=0}, {0, 1}, {V1, V2, Vg, C, Eq, Ep, E3}}
{m(z, vit), & Vi) (e=1Az2eRNV))V(E=0AZzeRV))
{m(z, V3'), &, Vo) (e=1ANzeRM))V (e=0AzeR(V5)
{m(z, v3'), &, V3} (e=1AzeRMV3)V(e=0AzeR(V3)
Tz, e, M)={ {m(z, E1Y), 1-5, B} e=1AzeR(Ey)
Mz E3Y) 1-¢,E)} e=1AzeR(Ey)
{m(z. E3%), 1-¢,E3} e=1AzeR(Ea)
m(z.C1),z,1-6C (6=1AzeRC)V(=0AzeR(CY)

where the regions R are defined as
RV ={z:zeCA Im2) =1}

1

R(Vz)—{ <—}
2072

R(Vs) { c/\ (1 'z] 1}
=l Z.2€ Z— +—|| < —
s 2)|” 2

R(C):{z:zec/\0<Re(z)<1/\




Results.nb 25

1

i 1

— z—(1+—=|>—

ETALG O Y
1

R(El)z{z:zeC/\0<Re(z)<1/\0sIm(z)<E/\

1 i 1
z—(1+—] >—}
2 2

2
R(Ez)z{z:ZEC/\0<Re(z)>1/\OsIm(z)<1/\

i
Z__
2

1
E<Im(z)<1/\

ool
s
()

3

R(V;):{z:zeﬂi/\%<Re(z)s1/\05lm(z)sl/\

)
>_
2
)
1
2

R(Eg)z{z:ZEC/\Re(z)<O/\OsIm(z)<1/\ Z_é

R(VI):{z:ZEC/\OsRe(z)sl/\lm(z)>1/\

1
7{(V§)={z:zec/\OsRe(z)<E/\
1

A

0=<Im@=1/\ ”

1
Z__
2

11 1 1 1

Z——|=— Z—|—+i —

2 2/\ (2+I)>2}
1 1

R(CHY=Sz:zeC z—(— ')s—}
(CH { e /\ 2+Iz 5

and

a;; a ajpZ+ap
oo ) e
Let
Pi(z, e, M)=12
Po(z, &, M) = ¢,
P3(z, £, M) =M,

then the M; in the expansion of ¢ are given as

M; = Ps(f"(f’ L ((1) 2 )))

Let
&n=M1-Mz-.. -My
be the truncated expansions (n < N) and let
AY A AP (101
BO B Bd | "0 11
then the n™ convergent of ¢ is the element of { A /B, A%V /BD, Al /B
that is nearest to &.
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Algorithm:StandardRutishauserQD

The formal power series

f(z2)= ch z
k=0

with ¢, € C can be converted into a regular C-fraction

< Z
f(z)=co+Kk—
k=1 1

with a, € C\O for k> 1.

Assuming the C-fraction exists, the a, are given by
C1 fork=1

a, = —quz fork/2e7
_eﬁi)—n/z for(k-1)/2ez.

The coefficients qf(') and eﬂ) can be recursively calculated through
el =0fork=1

c
a9 = X fork =0

Ck
el =q*P — g + el fork=1and1>1
(k+1)
-1
g = ——q*Pfork=1and !> 2.
e(k+1)
|

Algorithm:TennerAlgorithm
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Let d be a squarefree integer, x = vd bea quadratic irrational,

< ]
&= nIS E
be the regular continued fraction of x, and a,, P,, Qn, R, be integers. Given
Po=0,
Q.1=d,
Qo =1,
Ro=0,
ag =X/,
Pitn=1X]—Rp,

Q1+I"I = _(an (_Pn + P1+n)) + q(_l + n),
R1+n =[x+ I:)1+n —ain Q1+n
and
-X+ P1+n‘|
Q1+n ,

it follows that

Aiin = \‘

an - bn.

Algorithm:ThieleContinuedFractionAlgorithm

The Thiele continued fraction algorithm for a function f(x) given n + 1 distinct
points x;, j=0, 1, 2, .. , nis

n X — Xi
Ra(0 = fxo)+ K ’
j=

bj
where the bj are recursively defined through
bj Zq)[Xo, X1y ooy Xj]

®[xj| = f(x))
D[Xo, X1, o s Xj1, X}, Xja1| =
Xj+1 = Xj

®[Xo, X1, o+ Xjo1, Xju1| = ®[Xo, X1, -, Xjo1, xj]'

Algorithm:UspenskyAlgorithm
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Given a polynomial p(x), Uspensky 3 algorithm is a procedure by which p(x) can
be decomposed into the product of polynomials X1, X3, .. , X! so that for
k=1, 2, .. ,r, Xcis the product of linear factors of p(x) corresponding to roots
of multiplicity k. More precisely, the result of performing Uspensky 3 algorithm
on a general polynomial p(x) with r multi-roots is a decomposition

P(X)=ag X1 X3 - X/

of p(x) where ag eR is a constant and where fori=1, 2, .. , r,

X; = (X —by) (X =bp) -+ (x - bj)

is a polynomial whose simple roots by, by, .. , bj are all the roots of multiplicity
of i of p(x). For example, given

P(¥)=(x=1)(x=2)(x=3)* (x=4) (x5,

it follows that p (x) = ag X1 X2 X3 where ag =1, X; = (X — 1) (x - 2),

X2 =(X—-3)(Xx—4), and X3 = x —5. The process to compute this for general p is
given below.

To begin, recall that p is an arbitrary polynomial with r multi-roots and define
D, =gcd (P, P’) where P’ is the standard derivative of P. Similarly, let

D, =gcd (D4, D)), D3 =gcd (D, D5), and for general k, 2 <k <r,

Dy =gcd (Dk_l, D{(_l). Under this identification, each Dy can be expressed in
terms of Xj, L<k=<r, 1< j=<r: In particular, Dy = Xp XZ X3 --- X[,

Dy = X3 X2 --- X'=2, and for general k, 1<k <r-1,

Dy = Xieo1 Xip - X775

It is easy to see that this identification ends with D,_;, which is necessarily
constant; this confirms that p has no roots whose multiplicity is greater than r.

Uspensky 3 algorithm will be complete if the above information can be manipu*
lated to find explicit expressions for X,, k=1, 2, .. , r. To that end, consider
defining a sequence P4, .. , P, of polynomials by way of the following recursive
formula: Py =P/Dy = Xy X5 .-+ X;, P, =D1/D, = X5 X3 --- X;, and for general K,
l<k=r, Pp=Dy_1/Dy = X Xys1 -+ X;. In particular, this implies

P, = D,_1/D; = X,. Having created the sequence Py, P,, .. , P, explicit expres".
sions for X, k=1, 2, .. , r, can be isolated: X; =P,/P,, X, =P,/P3, and for
general k, 1 <k <r, X, =Py /Py,1. Using the above definitions, it is easily con".
firmed each root of each X, 1 <k =<r, has multiplicity k, whereby the factoriza™
tion (and hence the algorithm) is complete.

Algorithm:ViskovatovMethod
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The expression

n
>y xX
k=0

f=
n
> fox XX
k=0

has the equivalent continued fraction (C-fraction) expansion

flO
f~—,
dy o X
f00+K k0
k=1 dk-10
where

dyi =0k 2,1 Ok-1,0 = dk-1,j+1 Gk-2,0

dox = fox

di = fix

assuming that no relevant coefficients vanish.

The algorithm is based on the recursive application of the identity

3 K
> a X
k=0 ao X 2h) X
= = b_ +t = b_ + = .
k 0 > by X 0 Zaxk
kZO by x k=0 k=0
B ) (ak+1_zf bk+l) X 3 by XK

k=0 k=0

AlmostEverywherelntegralFormOfExtendedGaussMapValue
S

Let 7 be the natural extension of the Gauss map
7: (0, 1)x[0, 1] » R?

1
T(X, 0) = {T(X), }

bl(X) +0
where 7(x) is the Gauss map
1 1
T(X)=—— {—J
X Lx

and b1 (x) = 7(r(X)).
Then for any measureable function f from [0, 1]x [0, 1] - R? the following
identity holds:

1 f
lim — Zf(r f R
n-eo In(2) 0 (1+X y)2
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ApproximantDifferenceForRegularContinuedFractionsWith
ConstantPartialQuotients

Given a regular continued fraction
o< 1
¢=K —
k=1 by
with convergents A, /By, foralln>1andn—-1>r=> 2,

=12l r—1—i .
A A (_1)1+n+r Z ( ] )ar_1_2|
Sn n-r i=0

Bn Bn_r Bn Bn—l’

ApproximantsTolrrationalsViaFastContinuedFractionAlgorit
hm

Let a > 0 be an irrational number and let sq, s1, S, .. be the output values from
the fast continued fraction algorithm with respect to a. Then « can be
expressed as a continued fraction & of the form

1
§=50+

where v, > 1 is an irrational selected to make the equality hold. What is more,
if v, is replaced by s,, the fraction chain becomes a rational number p,/q, and
foreachn=1, 2, .. , these p,/q, are the terms in the fast continued fraction
algorithm for «; for n even, p,/dq, = a/b is a left approximation and if n is odd,
pPn/qn =c/d is a right approximation.

ApproximateHausdorffDimensionForContinuedFractionsWi
thPartialDenominatorsBoundedType
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Let A be a set of natural numbers, C(A) be regular continued fractions whose
partial denominators are in A, H be the Hausdorff dimension, and R,, be natural

numbers less than or equal to n. Then H(C({1, 4, 7})) = 2589

50000’
166 2719 1383
H(C{1, 2))) ~ 5oz, H(C((L, 3, 8) ~ o5 oo 25000°

1413 H(C{1, 2, 10})) =

25000’
H(C((1, 3, 4)) » 221 H(C({L, 2, T}) ~ =2, H(C({1, 2, 7, 40}) ~

50000’ 100000’

H(C(UL, 2, 5)) ~ 222 H(C((L, 2, 5, 40)) ~ o2 H(C({L, 2, 4)) ~

25000’
H(C({1, 2, 4, 40h) » 225, H(C({1, 2, 4, 15})) ~ 7oooss, HC(L, 2, 3D) ~ o5
H(C(L, 2, 4, T)) ~

H(C{1, 3, 7)) ~

5813
100000’

5951
100000’
1253
20000’
1673

H(C({1, 3, 6}) » -5+ HC({1, 3, 3}) »

6250
1437 291
oL H(C((L, 2, 4, 6)) ~ o5, HC({L, 2, 4, 5) ~ o,

H(C({L, 2, 3, 6) » yoo, H(C((1, 2, 3, 5}) ~ 700, H(C((L, 2, 3, 4)) ~ L2,

H(C({1, 2, 3, 4, 10})) ~ 1(?8‘330 H(C({1, 2, 3, 4, 6))) ~ 133330
H(C({1, 2, 3,4, 5)) ~ 2=, H(C(I1, 2,3, 4,5, 9) » oo,
H(C({L, 2,3, 4,5, 7)) ~ =2 H(C({1, 2, 3, 4, 5, 6))) ~ 222

12500’ 25000’
H(C(U1, 2,3, 4,5, 6,8))~ —2L H(C(L, 2, 3,4,5,6, 7)) ~
1809

100000’
9257
20000

2291
H(CRo)) ~ 555007 100000’

8889
100000’

H(C(R13) ~ oot

H(C(Rg)) ~ H(C(Rlo)) ~

H(C(R1s)) ~ and H(C(Ras)) ~ ——

10000’ 500 °

ApproximationCoefficientDifferenceDistribution
Let & be an irrational number with regular continued fraction expansion
= K —
k=1 by
with convergents A,/B,,. Let
An

&— —
B

n
and ae Z*. Then for almost all £ € [0, a/(1 + a)] with b, = a the density func
tion for the distribution of |®,,1 — ®,_1] is

1 1 2+a 1 a-z
p(2) = —( In(—) +— In(—)).
In(2) a a \a+z

O, =B2

ApproximationCoefficientDistributions
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Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation
< 1
E=0+ K —
k=1 by
and A,/By, the sequence of its convergents. Let ®,(¢) be the approximation
coefficients
An
&— —|.
Bn

Then, as n - oo, the following holds with respect to the Lebesgue measure A on

On(é) = B2

(0, 1]:
L forO<t<1/2
. In(2)
limA@ &) <t)=14
n—oo | 1-t+In2t) forl/2<t<1
n()
1 1
— forO<sAO<tAs+t<l1
IMA@,_1(&) <SA O &) <t)={ "D Vi-ast
n—eo 0 otherwise
1)
v 1 _ tin®
lim 1. BZ, “tl=! @ (In(t+1) ol ) forO<t=<1
noeo | O 0 otherwise
B}
. Bk+l®(§)<t) {0 forO=<t<1/2
k = 1 1-t :
noe (B I (2t @ -t*") otherwise.

ApproximationCoefficientsRecursionl

Let £ be the the regular continued fraction
M 1
f = bo + K —
=1 b;
with M < oo, convergents A,/B,, and approximation coefficients
An
E——|.
Bn

Then the following recursion relation holds for n > 1:

Onsr =06h_1 + bn+1 V1-0n106n — bﬁ On.

6, = B2

ApproximationCoefficientsRecursion2
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Let & be the the regular continued fraction
M 1
f = bo + K _—
=1 b;
with M < oo, convergents A, /B,, and approximation coefficients
g
5|

n

6, = B2

Then the following recursion relations hold for n> 1:

V1-46, .6, +1‘ ) lx/1—49n19n +1‘2
o, _

26, 26,

Oni1=0n-1+V1-46,_16, [

ApproximationCoefficientSum
Let ¢ be an irrational number with regular continued fraction expansion

© 1
=K —.

k=1 by
with convergents A,/B,,. Let

An
£——|

n

Then for almost all £ eR,

1

N
lim — > .1~ On_1| =
N-co N i3

2
n:Bn

2y+1-In(2n)
2In2)

ApproximationCoefficientSums



34 Results.nb

Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation

E=0+ K —
k=1 by
and A,/By, the sequence of its convergents. Let ®,(¢) be the approximation
coefficients
An
&— —|.
Bn

Then the following identities hold for almost all &:

On(é) = B2

1 n-1
lim— > Oé)=——
noo % 4= @)
1t 1 1
lim— ) 0.(¢&) 6y, ( —)
lim Zk@kﬂa P
1n-1B,, 1 1
lim = 3 =2 0 = =+ ——
noen & B, 2 4InQ)
O41(8)

1= 1 B2
Ilm Z k+1
n-co n ®k(-f) 12 |n(2)

ApproximationCoefficientTVSequenceDistribution

Let £ be an irrational number with regular continued fraction expansion

K
k=1 by
with convergents A,/B,,. Let
< 1
t,=K —
k=n b
and
n 1
vh=K .
k=1 bn+1—k

For almost all x, the sequence {t,, vy} is distributed according to the density
function

1 1

ut, vy = —— —
IN2) (1+tv)y?



Results.nb | 35

AroianContinuedFraction

Let p and g be real numbers and

1 forn=0
(p+5) (-p-9-9) _
Ch=1{ (pr2s(pr2sel) forn=2s+1
s(g-3) _
(p+25-1) (p+29) forn=2s
Ch=XCp
and
© 1
=K —.
n=1 C,
Then
Bx(p, @) &xP(L-x)7I(p+0q)
B(p, Q) Tp+LHT(@
ArwinFormula

Given a real root u to

0=by % + by u+ by,

P, a solution to

0= (b2 P5 + by (~Pp) + bo) mod Qp,

and integers Py, Qp, Qt, Zy, Zy—1, Yx, Yx-1, @, B, and y satisfying
ged(a, f)=1

ged(zy, Q) =1

pAPy Yo+ Buty)+ Ya

Qp Zx(a/lz"'ﬁ,u"'?’)"'zx—l
|yx Zy-1 — Yx-1 Zx| =1,

and let

Then
|2® As +0® Ay B+ B =Qp Q-
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AssociatedContinuedFractionTo2SeriesForGoldenRatio

Set

T(x) = iz“ X
i=1
and
t, =22,
Then T(¢) is a transcendental real and has as its regular continued fraction

S|
e=K =,

k=1t

AsymptoticBehaviorForFunctionsOfPartialQuotients

Let e > 0 and suppose that g is a function which behaves asymptotically like
pt= ie., g(p)=0(p'™), ie., g(p). If §=[0; by, by, .. ] is a continued fraction,
then

1 K (o]
lim — bn) = I
Jim = n;g( = 9(p) ogz[

p=1

(p+1)7?
p(p+ 2))'
In particular, if g (p) = 6, 4 for some q, then
fq=log, ( @17 ]

a@+2)

where f; = limg_,, Ny (K)/K for Nq(K) the number of times the digit g occurs in
the first K terms of ¢.

AsymptoticBoundForDiscrepancyOfCertainContinuedFracti
onRelatedSequences
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Consider the closed hypocycloid S of g cusps whose parameterized form is
given by

X(t)=(0—-1)rcos(t) + rcos((¢—1)t)
Saﬁz{yayzw—lnﬁnan¢sm«9—nn
for 0 <0=p/q<1and let {S}! denote the trace of S on the interval
I, =0, 2t p/q], that is, {S}! is the partially completed plot of S on |;. Further,
let w= {frac(n 9)‘}&1”= 1 where frac(n 6)t denotes the finite portion of the fractional
part of (n ) corresponding to {S}'. Under this construction, if & is the continued
fraction representation of (n§)! forn=1, 2, .. and if & has bounded partial

quotients, then the discrepancy Dy(w) satisfies the asymptotic expression
Dy (w) =0 (N~*InN). Moreover, if £ has partial quotients bounded by some K,

then

NDN@ns3+( IN(N).

+
In(¢) In(K+ 1)]

AsymptoticConvergentBehaviorOfLimitPeriodicContinuedF
ractions

For a limit periodic continued fraction £ = K(b,/1) = [0; by, by, ... ] with
by— (-1/4) < —~— 0<p<1n=12, .,

4(4n?-1)
hp 2n+2+p
<
hn — % 1,3
forn=1, 2, .. where h,=-5-1(0), S, (0) = A,/B,, is the nth approximant of ¢,
and approximant function S, (w) = m.

AsymptoticDigitSumDistribution
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Let the number 0 < x < 1 have the regular continued fraction expansion
< 1

x=K —
k=1 by

and let S,(x) be the digit sums of the truncated partial denominator sequences
r
S,(x) = K b,.
k=1
Furthermore, let ¢(¢) be the stable distribution with density

P& = PDF[StabIeDistribution[0, 1,1, In(g), g] f]

and u the ordinary Lebesgue measure on the real line. Then
Z In(2)/r+y—In(r/In(2))

lim sup(m({x xe 0, HAS(2)<z}) - f

r-oco 7eR —c0

&) d f)-

AsymptoticDistributionOfCoefficientsForlrrationalContinue
dFractions

Let £ =[0; by, by, .. ] be the continued fraction representation of an irrational
number a € (0, 1), let Np(K) be the number of times the digit p occurs in the

first K terms of &, and let f, = limy_, Ny (K)/K if it exists. Then with probability
1, the coefficients b; of ¢ are distributed asymptotically and

(p+1)?
p(p + 2)]'

fo= Iogz[

AsymptoticModularPropertiesOfDigits

Let 0 < ¢ <1 be an irrational number with the regular continued fraction
expansion
< 1
f = bo + K —.
k=1 b
Then forany me Z*, 1 < j <m -1, the following identity holds for almost all ¢
3\ (2
1 1 [TR)T)
rI1I—>m n Zékkmc’d mi = | n i+1\2 |
*n = n(2) 1"(’—)

m

AsymptoticRelativeDigitFrequency
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Let ¢ be an irrational number with the regular continued fraction expansion

< 1
§=b0+K—.

k=1 by

Then for any j e Z*, the following identity holds for almost all ¢

12 1 1
lim = 36}, = In(l +— ]
noeon = In(2) j(3+2)

AsymptoticRelativeDigitFrequencyWithErrorTerm

Let £ be an irrational number with the regular continued fraction expansion

<1
§=b0+K—.

k=1 bk

Then for any je Z* and any ¢ > 0, the following identity holds for almost all ¢;

10 1 1 1
lim — Zéj,bk = In(l + — ] +o| [ —In3m) |[.
noeon In(2) j(G+2) n

AsymptoticRelativeDigitRangeFrequency

Let £ be an irrational number with the regular continued fraction expansion

<1
§=b0+K—.

k=1 bk

Then for any ji, j, € Z* with j; < j,, the following identity holds for almost all
&

1 n
lim — > Boole[j; <k < jo] =

noeon = In(2)

1 In((jl +1) (2 + 1)]
j1(j2+2) .

AsymptoticRelativeExceedingDigitFrequency
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Let 0 < ¢ <1 be an irrational number with the regular continued fraction

expansion
< 1
&= bo + K —.
k=1 by

Then for any je Z*, the following identity holds for almost all ¢

1 1 1
lim — > "Boole[by > jl= —— In|1+ —|.
noeon = In(2) j

AsymptoticsForHausdorffDimensionForBoundedPartialQuo
tients

Let n be a natural number, E be a subset of the natural numbers less than or
equal to n, E(R) be the regular continued fractions ¢ whose partial denomina’
tors lie in E, and H be the Hausdorff dimension. Then

6 721In(n) 1
+ O( )

HER)=1-— -
n 7r2 n2 7r4 n2

AuricTheorem

Let
o g
=K a
be a generalized continued fraction where a, # 0, and X, be the three term
recurrence solution continued fraction of £. Given X, + 0 and

n
o | I1-an
m=1
[ ==
n=0 X—1+n Xn

then ¢ converges to

AverageContinuedFractionLengthOfARational
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Let g be an integer and for rational numbers 0 < p/q <1, gcd(p, ) =1 and let

W)
p 1
__KZ
q k=1 by

be its regular continued fraction expansion.
Then the following limit for the average length of a continued fraction of a
proper fraction with denominator q holds:

1 < (p) 12In©) 1

lim— Z L[ ]: In(q)+Cp+O[ ]
g-co ¢(q) o 2 q1/6+.9

ged(p.a)=1

q

T

where £ >0 and
121In(2)

p=
2 72

1
481In(A) - 2 — In(2) - 4 In(n)) - >

AverageGrowthOfHalfRegularContinuedFractionConvergen
tsDenominators

Let

> &
¢=K =

k=1 By
be a half-regular continued fraction expansion and A, /By, the sequence of its
convergents. Here —1/2<¢é<1/2and é¢Q and g, € {-1, 1}, By Z", B =2
and By + &1 = 2, &1 =sgn(é), |B1 - 1/I&ll < 1/2.

Then for almost all -1/2 < ¢ < 1/2, the following holds:
~ InB, n?
lim = .
n-co N |n(¢)

AverageOflteratedGaussMap
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Let 7 be the Gauss map

T:R->Z
1 1
T(X)=—~ {—J
X Lx
Then for any Borel subset A of the interval [0, 1]
1 1A(X)
lim A(t") = — dX.
n—wonZ:A In(2) 0 1+Xx

where 14(X) is the indicator function of the set A.

AverageOflteratedHalfRegularGaussMap

Let 7 be the Gauss map equivalent for half-regular continued fraction expansion

o)

_KZ%
k=1 By

where -1/2<¢é<1/2and é¢Q and g, € {-1, 1}, By Z*, By =2 and
B+ &1 22, 1 =59N(), |B1 — 1/I€1l <1/2 defined as

76 =K —.

k=2 fy
Then for every Lebesgue-measurable function f and for almost all
-1/2 <& <1/2 the following holds:

12 —  foro <0
I f = f do.
|m Z @EN= In(¢) foroc>0 7

+t

BadlyApproximableNumbersHavePoorRationalApproximati
ons

Let ¢ be a regular continued fraction, e be a positive real, and x be a rational
number p/q. Then 3, Yy |-x + & = €/g? & £ is badly approximable.

BakerBoundForUniformConvergenceOfHolomorphicPadeA
pproximants
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Let U be a disk, r be the disk radius of U, f(z) be a formal power series that
converges on U, f,(z) be the Padé approximants diagonal for f at 0, and V, be
the complex poles set for f,(z) in U. Then given V, = @, the sequence f,, con".
verges uniformly on U.

BankierGeneralizationOfGaloisTheoremOnPurePeriodCont
InuedFractions

Let &1 be a continued fraction with periodic partial numerators and
denominators

é:l = bo + K —
k=1 by

Agin = @an

Bin = bn.

Let & be the continued fraction with periodic partial numerators and
denominators

(e

An_k+1
&£=K

k=1 bn—k

where &; and &, converge and a,+0, then

&r=-129
where z; is the conjugate of £; as quadratic expressions.

BaseComplementContinuedFractions
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Let p1/q; and p,/qg, be two rational number (p1, d1, p1, 91 € Z") with regular
continued fraction expansions

P n®

1

—=b’+ K —

i k=1

k

(2)

P2 T

—=b+ K —,

02 k=1 2

and let A" /B” and A? /B! be their convergents sequences. Define the
fraction
2
A P+ P20y
TR
B P1+0201
with regular continued fraction expansion

n®

_p®
&=bo +kI=<1 b
k

and convergents Af)/Bf). Then the following identity holds:

©é (3] @ @
Aoy _ Ano_q Aoy +P2Bra_,

(3] T L@ (1) @)
Bro_1 Bio_; Avo_y Td2Ba

BasicPropertiesOfContinuants

The continuants K,(x4, Xo, .. , X,) have the following properties:
KI’](11 A | 1): Fn+1

Kn(X1, o s Xn +Y) = Kn(Xq, .., Xn) + Y Knoa(Xq, o Xn-1)

Kn(X1, - s Xn) Kna(X2, oy Xno1) = Knca (X2, oy Xn) Kn(Xq, oy Xpo1) = (=)

Kmin(X1s o 5 Xman) Ki(Xma1s s Xma) = K (X2, w3 Xme1) Kn(Xmszs o 5 Xme1) =
(=1)" Km_1(X1,  , Xm-1) Kn_j-a(Xmat2s = » Xman)

If a real number ¢ has the regular continued fraction expansion

&=Do + 5 b_k

then
_ Knta(o, by, .., by)
Kby ., by

BasicPropertiesOfRegularContinuedFractionConvergents



Let ¢ be a real number with regular continued fraction expansion

f bo+K—

k=1 b

(M possibly co for irrational numbers) with convergents A,/B,. The conver’

gents have the following properties:
Recurrences:

An=b,An1 — An_owhere A_y =1and Ag =bg
B,=Db,Bn1 —B,_owhereB_;=0andBy=1
Identities:

Av Ana (DM

Bn  Bns1 Bn—l Bn

&= bo+z

f = bo + K ,
k=1 Sy ém + (1 = Omk) i

n Bn+1

1

where
Ev =by + K b
M+k
ng(An—li An) =1
and
ng (Bn-1, Bn)=1
Bounds:
A,<F,and B, < F;1
Azn Azni1
<é<
Ban Bons1

1 1
— <[{Bn - Anl= —
2B B

n n
A 0]
T=gr (DM —,
B 2
where
<0l < —
bn+1 +2 n+1

Bounds on differences:

An An+1
E-—|>l¢-

Bn Bn+1

1 A, 1
— < |- —|<
n(Bn+1 + Bn) Bn Bn Bn+1

An 1

e~ 2« =

Results.nb
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" Byl 2B
A, 1
{-—|< ——
Bn I:n+1 I:n+2
A, 1
- —<
Bn ¢2 n-1
A, 1
£- —|<—
Bal (V2)
A, p A‘
—_—— S —_— —
B, B

forallAcZz*, BeZ*and0<B <B,,.

BauerMuirTransformation

Given a sequence w = {w,} of complex numbers, the Bauer-Muir transformation
of a generalized continued fraction ¢ of the form

a;
f = bo +

az

b1+

ag

+
b2 bg+--

with respect to w is the continued fraction ¢ of the form
{=do+ gl

m=1 dm
whose canonical numerators C, respectively canonical denominators Dy, are
defined by the recursion relations C_; =1, C, = A, +w, A,_1, D_; =0, and
D,=Bn+w,B,1 forn=1, 2, 3, .. .Here, A,/B, denotes the canonical nth
convergents of &.
One well-know result concerning the Bauer-Muir transformation is a characteri’
zation of its existence. In particular, given a generalized continued fraction ¢ of
the form stated above and a corresponding complex sequence w = {w,}, the
Bauer-Muir transformation of & with respect to w exists if and only if A, # 0
where here,

Ay =ap —Wp (bn +Wp)

forn=1, 2, 3, .. . Moreover, Lorentzen and Waadeland showed that if it exists,
the Bauer-Muir transformation of & with respect to w has the form

§=b0+W0+

where ¢, = an_1 gn-1 and dn = by + Wy — Wn_3 gn_1 for gn = A41/An,

n=1, 2, 3, .. . More specific properties of the Bauer-Muir transformation have
also been studied in relation to various other topics including but not limited to
the Rogers-Ramanujan continued fraction.
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BestLeftApproximation

Let a be an irrational number in (0, 1). Then a fraction p/q is called a best left
approximation to « if (i) p/q <« and (ii) there is no fraction x/y € (p/q, @)
with a denominator y <q.

BestRationalApproximation

A fraction p/q is called a best rational approximation of the real number ¢ if

p
-
q

r
<k

S
for any integers r and s such that s<q and p/q#r/s.

Let £ have the regular continued fraction expansion

(for M possibly o) with convergents A,/B,.
Then every convergent A, /B, is best rational approximation of &.

BestRationalApproximationTheorem

Let

N
E=bo+ E é
be a regular continued fraction with value ¢ and convergents A,/B,, and let p
and g be two positive integers such that
p An
al [ B,

q
Then g = B,,. Moreover, if g =B, then p=A,.

<|é-

BestRightApproximation
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Let @ be an irrational number in (0, 1). Then a fraction p/q is called a best right
approximation to « if (i) p/q > @ and (ii) there is no fraction x/y € (a, p/q)
with a denominator y = q.

BijectionFromPowerSetOfNaturalNumbersToPositiveReals
ViaContinuedFractions

Define f to be the function from the powerset of the natural numbers to the
nonnegative real numbers by

0 forA=0
n for A= {n}
v 1
f(A) = al+£m for|Al=m
a1+K L for |A] = .
k=1 A+1—ak

Then f is a bijection between the powerset of the natural numbers and the
nonnegative real numbers.

BinaryQuadratickFormRepresentationOfNegativel

Let D be a positive integer that is not a perfect square, let x> — D y? represent
-1, let

]
¢=K —

n=1 b,

be the regular continued fraction expansion of VD, and let P,/Qn be the nth
complete quotient of £&. Then

D=Q2+P2
where Q,, is odd, and
ng(Pn: Qn) = 1

BinaryQuadraticFormRepresentationOfPlusOrMinusb
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Let D be a positive integer that is not a perfect square, let x> — D y? represent
-1, let
o< 1
¢=K —
n=1 b,
be the regular continued fraction expansion of VD , let P,/Q, be the n!" com’
plete quotient of £, and let A,/B, be the n'" convergent. If
(T1! Ul) = (An—l - An—2: Bn—l - Bn—z)
then
T2-DU=(-1)"2P,.

Similarly, if
(Tz, UZ) = (An—l + An72: Bn—l + anz)
then

T3-DUS=(-1)"'2P,.
Finally,
gcd(Ty, Up) =ged(T,, Up) =1.

BlockComplexityAsymptoticForContinuedFractionsOfAlgeb
raics

Let @ be an algebraic number where 0 <a <1,

© ]
¢=K —
n=1 b,
be the regular continued fraction of @, and p(n, b,,) be its block complexity.

Then given that b, is not ultimately periodic, it follows that
Iimnaoo p(”f bn)/n = 0.

BlockComplexityBoundForContinuedFractionsOfAlgebraics
Let @ be an algebraic number where 0 <a <1,

< ]
¢=K —

n=1 b,
be the regular continued fraction of «, and p(n, b,,) be its block complexity.
Then given that b, is not ultimately periodic, it follows that p(n, by) =n + 1.

BohmerFormula
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Given a regular continued fraction
< 1
a=K —
n=1 b,
with convergents A, /B, and an integer ¢ > 1, then the continued fraction for
the approximant function

>~ 1
Sp@)= K —
n=1t

n
is given by
boc forn=0
th=

cBn_cBn-2

= otherwise.

BoundedBranchedFractionsWithNaturalElementsConverge

Any bounded branched fraction with natural elements converges.

BoundedPartialQuotientsForContinuedFractionForBaumsSer
les

Let K = F(x™%) = Fp(x™*) be the formal power series in 1/x with coefficients in
the field of two elements. Given f in K with ¢ its regular continued fraction
and by, its partial denominators where

f
2+—-+1=0,

X
then deg(b,) < 2.

BoundsOfErrorSumFunctionsOfContinuedFractions

Let @ be an irrational number where 0 < a < 1, £ be the regular continued
fraction of @, E(a) be the absolute error sum function of ¢, and &* (@) be the
error sum function of £. Then E(@) < ¢ and E*(a) < 1.

BoundsOnContinuedFractionApproximants



Let @ €R be an arbitrary real number with associated continued fraction ¢ and
let P,,/Q,, denote the nth convergent of ¢ forn=1, 2, .. . Then

Pn 1 1
a—-—|< < —

Qn Qn Qn+1 Qﬁ
for all n.

BranchedContinuedFraction

A branched continued fraction is an expression of the form

N
f=bo+z N
h=1 bi1+ 2 N

o= By ip iy
i2=1 nj j,+ 3 =2
ip=1 12l

a;;

ai i,

BranchedContinuedFraction:BoundedBranching

A branched continued fraction X of the form

N
X=b+Z "

i1=1 bil + . 2

4

1

iy iy

is said to have bounded branching if the branching numbers N, N; ;,  of X
are all bounded by one number.
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BranchedContinuedFraction:BranchedFractionWithNaturalE

lements
Given a branched continued fraction X of the form
N
a;;
x = b + Z Nii ’

i1=1 bil + . 2

=1 1 Ay ipig
T byt X

the numbers a; i, . i, b, and b
except for possibly b are natural numbers, X is said to be a branched fraction

with natural elements.

i i,i,.. i, are called the elements of X. If all elements
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BranchedContinuedFraction:Convergence

For any branching fraction X of the form

N ail
X=b+ Z ,
N;
i;=1 3 iy j
' bll + A Z '12'23
R
iz=1

one can construct so-called convergent fractions X, of the form

1
Xnm=b+ Z
172
i1=1
112 Im-1
Nil bl 2 m-1 21 12 m
bil + Z b =
i271 ipip . im

by removing all elements from X with indices greater than or equal to m + 1 for
m=1, 2, .. . If the limit of X, exists as m - oo and if @ = limp,_,, X, then it is
said that X converges and represents «.

BranchedContinuedFraction:PeriodicBranchedFraction

Two branching fractions are said to be graphically equal if their branching
numbers are the same and if the elements with equal indices coincide; branch’
ing fractions which are not graphically equal are said to be graphically differ™.
ent. A branching continued fraction X of the form

N
X=b+ Z S
i1=1 bi1 + Zli iy iy

Nii
1 :l ES 2all'2'3
275 byt X =
ia=

a;,

1

is said to be periodic if it contains a finite number of pairwise graphically
different subfractions.

BrodenBorelLevyTheorem
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Let T be the Gauss map
T:R->Z
1 1
T(X)=—— {—J
X Lx
and let 0 < ¢ < 1 have the regular continued fraction expansion

0o

The Lebesgue measure A of all ¢ in [0, 1] that have the initial partial denomina
tors by, by, .. , b, and property that (&) < £ is

L (Sn+ 1)67
Shé+1
where
n 1
s, = K .
k=1 bp_ys1

BundschuhSumExpansion

Let
) g- 1
aq(h)= Z Lk BI

k=1 9
where ge Z and g > 1 and g is an irrational number. Further, let
1 o< 1
- = bo + K —
B n=1b,
and A, /By be its convergents. After defining a sequence C, through

C0=b0

by-1
Cp=gin-2 Z g'%Dwheren=1
j=0

the following identity holds:

< 1
ag('B)ZCO+[1I=<1 C_

n

BuslaevCounterexampleToHolomorphicPadeConjecture
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Let
1
4:5(-1—12\/?)

and

3({+9)23+622+\/426+81(3—(§+3)Z3)2 -27

f(z2) =
22(C+972+92+9)

be a hyperelliptic function set, and f;(z) be the holomorphic function thats is
the branch with f{(0) =0. Then it is not the case that f;(z) satisfies the Padé
conjecture.

BuslaevCriteriaForContinuedFractionConvergence

Let

¢=K —

n=1 b,

be a generalized continued fraction. Then given

limsup|-1+by|+2lim sup\/ |-1+a, + byl <1, the continued fraction

N—oo N—oo

converges.

CantorSetEqualitiesForRealNumbersWhoseContinuedFracti
onsHavePartialQuotientsLessThanOrEqualTo20r3

Let F, be the real numbers whose regular continued fractions have partial
quotients less than or equal to k and G, be the interval containing it.

Gy = [min(Fy), max(Fy)]

Then

1 3
3F3=3Gz= E(\/Zl -3), E(\/Zl -3)
and

4F2=46,=[2(V3 - 1), 4(V3 -1]].

CDuallyReducedIrrationalNumber



Results.nb | 55

In irrational number @ € R\Q with conjugate o’ is C-dually reduced if o > 1 and
a’ <0.

CDuallyRegularFractionsConvergeTolrrationals

Any C-dually regular continued fraction ¢ converges to some @ € R\Q.

CentralLimitTheoremForContinuedFractionConvergenceOf
DecimalApproximations

Let x be an irrational number where 0 < x <1 and
d,(x)=10""[10" x|
e,(x)=10" (10" x| + 1)
be decimal approximations of x. Let
< 1
&= 51 E

be the regular continued fraction of x,

© 1
dn(x)=K —

n=1 bgd)
be the regular continued fraction of d,(x),

< 1
en) =K —

n=1 b(:)
be the regular continued fraction of e,(x), and
Kn(X) = sup {i :Vis<n /\ b = bfe)}.
i

Let S be irrational numbers x with (ky(x) —an)/(v'n &)=z, where

61In(2) In(10)
a -_——

7T2

and o is a positive constant. Then

Vi<Kn(x), b =b® =p®

and

1 z
lim (M(S)) = f e /2 4,
e V2 e

where m is the Lebesgue measure.
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CFractionForCertainPowerSeriesl

The power series P (x) = Cp + Y52, ¢j X% 2“, ¢i+0,i=0,1,2,. ,21; =1, has the
corresponding continued fraction

b]_X/11
§=C0+
1+

b, xM
by x'1

1+---

1+

where by, by, .. are given in terms of ¢4, ¢,, .. by the formulas: b; =cq,
ban = ~azns1, by, = ~C1 Civ1 /¢, and by gt ig = (=1)" by, for
i,n=1,2,3, ...

CFractionForCertainPowerSeries2

Under the hypothesis Aj,; =2 fori=1, 2, 3, .. , the power series
P (X) =Co + Y52, Cj X% 2“, ¢£0,i=0,1, 2, .. ,2; =1, has the corresponding
continued fraction
b]_ X*
E=Co+ ———
14+ 22X
1+

by X3

v
where the b; are independent of the A; and are given in terms of ¢4, C,, ... by the
formulas a; = ¢y, @pn = —82n41, 81,1 = —C1 Cir1 /¢2, AN @, vt pier = (-1)" Ay,
fori,n=1, 2, 3, .. , and where the «; are independent of the ¢; and are given
by the formulas: @1 = A1, a2n = @211, @i,y = A1 +Aix1 — 24, and

ity = (D ayi,, fori,n=1,2,3, ...

CFractionForCertainPowerSeries3
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Given a formal power series fo (z) = X5 oCn z7"1 there is an associated contin
ued fraction & of the form

Co
&=

Bo

Z—Qqo— r

Z-a1—

where the partial numerators A,(z) and denominators By(z) of & are polynomi’
als of the form
k-1

Ac(2)= Z(k,n z"

n=0
and

k
Bk(Z) = Zé/l,('n Zn,
n=0

respectively, for some complex constants ¢y, j -

CFractionsInOneToOneCorrespondenceWithNonRationalP
owersSeries

There is a one-to-one correspondence between corresponding type continued
fractions

by x*

=14 —
b, x*2
1+ 1 bz x"3
+ oo

and power series of the form

PX)=1+ chxk

k=1
which do not represent rational functions of x. Moreover, if the nth convergent

of £ is denoted A, (x)/B, (X), this correspondence is completely determined by
the recursion

Bn (X) P (X) - An (X) = (Xal+a2+"'+an+1)

where (x*) denotes a formal power series in which the sth power is the smallest
power of x which appears.

CharacterizationOfBestLeftRightFit
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For any irrational number « in (0, 1), the Farey process zeroed in on « gives a
sequence of best left and right approximations to . Moreover, every best left
and right approximation arises in this way.

CharacterizationOfContinuedFractionApproximants

For any real number X, let ¢ be the continued fraction representation of x and
let a, be the (r + 1)th partial quotient in &, i.e., A/B, = [bg; by, by, .. , by] where
A, /B, denotes the (r + 1)th convergent of £. Then either (i) there are an infinite

number of rational approximations p/q to x for which q|q x — p| < —or (ii)
r’+4

there exists an integer ng for which a, <r—1 for all n = ng.

CharacterizationOfFareylintervalsAndMediants

Let [a/b, c¢/d] be a Farey interval. The two subintervals [a/b, M] and [M, c¢/d]
formed by inserting the mediant M = (a + ¢)/(b + d) are also Farey intervals and,
among all rational numbers x/y such that a/b < x/y <c/d, M is the unique

rational number with the smallest denominator (when reduced).

ChordalMetricOnRiemannSphere

Let wy and w, be two points in €, then the Euclidean length of the chord
connecting the two points, known as the chordal distance or chrodal metric, is

given by
1, W) €
V 14wV 1+{wof?
S(wy, Wp) =14 —2 W eCAW, =&
v L+iwy 2
0 W1 =Wy = &.

CircularConvergenceTheorem
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Let V,, be a region in the complex plane characterized by the fact that v, € V,, if
and only if Re(vn e “) = —(@p C0S @ Where the g, are constants, 0 < g, <1 for
n=1,2,.. ,and where a € (-n/2, n/2). Let ¢ be a continued fraction of the
form &£ =[0; by, by, .. ] and denote by K, the circular region K, =S, (Vn41) Of
radius R,,, where S, (0) = A, /B, is the nth approximant of £ and where

Sh (W) = g"::% is the approximant function for all complex w. If d,, denotes
n n-1

the quotient
n
1
VI;[l ( Ov+1 )

ZhiE

k=0 y=1 Ov+1

dn=

and if the sum
i dv—l gv(l - gn+1)
—r by |

diverges, then ¢ converges to some complex number b.

ComparisonOfContinuedFractionPeriodsForRootDAndHalf
OfOnePlusRootD1

Let D be a square free positive integer and for the regular continued fraction for
V D, by(n) its partial denominators, and I,(D) the period of b;(n) and for the
regular continued fraction of (VD +1)/2, by(n) its partial denominators and

I,(D) the period of by(n). Given J,4qtanqu T2 - D+xU™2 =4 then
I,(D) + 4 <11(D) =5 15(D).

ComparisonOfContinuedFractionPeriodsForRootDAndHalf
OfOnePlusRootD2

There are infinitely many D that are square free positive integers with

mod(D, 4) = 1 and for the regular continued fraction for \/3, b1(n) its partial
denominators, and |,(D) the period of b;(n) and for the regular continued
fraction of % (\/E + 1), b,(n) its partial denominators and I,(D) the period of
b,(n), it is the case that I{(D) =3 1,(D) — 8 and it is not true that

JogdTandu T2 — DU? =4 and it is not true that 3y znqw V2 -~ DW? = -1 and I;(D)
is unbounded.
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ComplexRegularSymmetricPeriodicContinuedFractionsForl
maginaryQuadraticlrrationals

Let D be a natural number, Qg be a positive integer,

VD
X=——
Qo
be an irrational number, b, be a natural number,
< 1
¢=K —
n=1 a,

be the regular continued fraction of x, I(d) be the regular continued fraction
period of ¢, and

ibg forn=0
an=1{ ~ibhmodp fOrnmodp=+0

—2ibg fornmodp=0
be the partial denominator of £&. Then b, can be determined by also determin’
ing the sequences P,, and Qy:

Po=0
D-P3
Q=
Qo
VD
bh=|—+P,
Qn

I:’n+1 = bn Qn - Pn
Qn+1 =Dbn (Pny1 = Pp) + Qn_s.

ConditionalProbabilityTheoremForContinuedFractionCoeffi
cients

Let £ =[0; by, by, .. ] be an arbitrary continued fraction and suppose that k > ¢
are two positive integers. The conditional probability Pr {b, = p | b, = q} differs
little from the unconditional probability Pr {b, = p} which is asymptotic to f,
where f, = limy_,., Ny (K)/K for Np(K) the number of times the digit p occurs in
the first K quotients of £&. More precisely, given an arbitrary constant g,

Pr{bk= P | bzzq}_ prO(e‘iﬂ ki{)

as the difference k — ¢ tends to infinity.
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ContinuedFraction

The term “tontinued fraction”’can be applied in several different contexts. In
general, any expression ¢ of the form
az

a

§=Dbo +
b1+

ag

bo+
2 [

with terms aj, by, j=1,2,3,.. ,k=0, 1, 2, .., consisting of arbitrary mathe".
matical objects such as vectors in C", C-valued square matrices, Hilbert space
operators, multivariate expressions, other such fractions, etc., is a continued
fraction. Such expressions can terminate after finitely many terms or can
continued infinitely. The terms ay, respectively by, are called the partial numera
tors, respectively partial denominators, of £, and together, objects of the collec™.
tion {ay, by} are called the elements of £.
Most typically, the term “tontinued fraction”’is used to describe the scenario
where a;and by, j=1,2,3.. ,k=0, 1, 2, .., are integers. In this case, any
continued fraction which terminates after a finite number of terms defines a
rational number g € Q. Otherwise, there are two distinct possibilities for the
expression & which are characterized by the behavior of the rational numbers g,
defined by the finite expressions &, of the form

a;
én= bO +

a
b1 + . a,
.

called the nth convergent of £. In particular, it may be the case that for some
real number @ eR, &, » @ as n - oo whereby it is said that ¢ is the continued
fraction associated to @ and that &, converges to «; it is also possible, however,
that &, diverges as a sequence of rational numbers.

The above definition can be made both more general and more mathematically
rigorous by way of the following function-theoretic construction. Given an
ordered pair of sequences ({am}, {bm}), am, bmeC, meZ*, a,, #0 form= 1, one
may consider the associated sequences {s,(W)}, {Sh(W)}, n=0, 1, 2, ..., of linear
fractional transformations defined recursively by sg (W) =bg + w,

an
Sn(W) = [}
by +w
So (W) =59 (W), Sp (W) =S,_1 (sSp(W)) for n=1, 2, 3, .. . By then defining the
sequence {f,} so that, foreachn=0, 1, 2, .. , f,=S,(0) € C | {o0}, ONe can

define a continued fraction (with complex elements) to be the ordered pair
(({am}, {bm}, {fnh).
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ContinuedFraction:AlphaFraction

Let £ be a real number. Then the a-continued fraction expansion for 1/2 <a =<1

(where N is possibly infinity), ; € {-1, 1}, and b; € Z* can be calculated
through the repeated application of the map 7,: [e -1, 1] > [a -1, 1]
) |01 forx+ 0
Ta(x) = { X X
for x=0.

ContinuedFraction:AlphaRosenFraction

Let £ be a real number. Then the a-Rosen continued fraction expansion for
geZ*,q=3and A\g=2cos(r/q) O<a<1/A

N g
f =&p bo + K —J
j:l J
(where N is possibly infinity), ¢; € {-1, 1}, and b; € Z* can be calculated
through the repeated application of the map 7,: [(e — 1) A, @ A] - [(@ - 1) A, @ ]]

T A 1-af forx#0
Ta(x) = {

X AX

0 forx=0.

ContinuedFraction:AlternatingPositiveTermFraction

A Thron fraction ¢ of the form
Fiz

&=
1+G,z+ 2,

ZF3

1+G, z+ TGz

is said to be an alternating positive term fraction or APT-fraction if
Fm, Gm € R\{0} satisfy the conditions F,,,_1 Fon >0, Fom_1/Gom-1 > 0 for
m=123, .. .

ContinuedFraction:ApproximantFunction
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Given an ordered pair ({am}mez+: {bm}mez+) Of complex sequences with ap, =0

for m = 1, the so-called nth continued fraction approximant function S, is the

function defined recursively for complex numbers w € C by Sg (W) = So (W) and
Sn (w) = Sn—l (Sn(wW)),
where so (W) =bg +w and s, (W) =a, (b, +w) " forn=1, 2, 3, .. . By way ofa
simple substitution for n > 1, it follows that S, has the form

a;
Sn (W) =Do +

a
az

b1+

b+ —2
L
b +w

Despite nomenclature which has yet to be standardized, S, is called the nth
approximant function by authors as a way of acknowledging that S,(0) is the
finite generalized continued fraction &, of the form

n am
Sn(o)zfnzbO"‘K -
m=1 bm

also known as the nth approximant (or nth convergent) of the related infinite
generalized continued fraction

Though often unnamed, at least one other name related to S,, can be found in
the literature. Cuyt et al. refer to S,, (wy) € C as the nth modified approximant
related to a sequence wg, Wy, W», ... of complex numbers. This term appears to
be an acknowledgment of work done by Thron on the results of “modifying" the
sequence {S,(0)} of continued fraction approximants to a sequence {S,(wp)} for
some prescribed complex {w,}. Similar references and conventions can be found
in the works by Lorentzen & Waadeland.

ContinuedFraction:ApproximationProperty

A number field [F is said to have the approximation property if for every
“frrational”’a (i.e., a ¢ F),

P 1
- —|<—
Ql k@?

for infinitely many rational elements P/Q € F and for k a positive constant.

ContinuedFraction:ApproximationsinDefect
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Let £ =[0; by, by, .. ] be a continued fraction (either finite or infinte) which
converges towards a number @ and let A, /B, denote the nth convergent of &,
n=1, 2, ... Then the odd convergents A,,_1/Bon_1, N=1, 2, ... , which
increase towards « are called approximations in defect.

ContinuedFraction:ApproximationsinExcess

Let £ =[0; by, by, .. ] be a continued fraction (either finite or infinte) which
converges towards a number « and let A, /B, denote the nth convergent of &,
n=1, 2, .. . Then the even convergents A,,/B>n, N =1, 2, .. , which decrease
towards « are called approximations in excess.

ContinuedFraction:AssoclatedContinuedFraction

Given sequences of complex numbers a,, and B, with @, +# 0 the associated
continued fraction is the generalized continued fraction
an forn=1
00 { -7z2a, otherwise
K

n=1 1+p8,2

ContinuedFraction:BaumSweetContinuedFraction

Let s={sp}x, be a binary sequence whose nth term s is defined to be O if the
binary expansion n contains (at least) one string of zeros having odd length
and is defined to equal 1 otherwise. The sequence s is called the Baum-Sweet
sequence and the regular continued fraction & = [O; Sg, S1, S, .. ] is called the
Baum-Sweet fraction associated to s. This construction can be also generalized
by way of the transformation 0 - a, 1 — b for distinct positive integers

a, be z*, whereby s, e{a, b} forallk=0, 1, 2, .. .

Though this fraction seems to be the focus of relatively little literature, it was
defined by Baum and Sweet as part of their work on algebraic power series and
has been linked to areas such as diophantine approximation theory. Moreover,
one of the more well-known properties of the Baum-Sweet fraction ¢ is that it is
transcendental, a result which can be proved by advanced numerical methods
found, e.g., in the work of Adamczewski.

ContinuedFraction:ByExcessContinuedFraction
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A continued fraction is called a by-excess continued fraction if it has the form
N -1

£=bo+ K —,
k=1 by

where b, € Z* and N is possibly co.

For example,
1531 1

1101  o__1

1
4=
5

is a by-excess continued fraction.

ContinuedFraction:CConvergent

For any irrational @ € R\Q with associated C-regular continued fraction ¢ of the

form

€1
E=28p—1 4 i
a; +

€

a+

1
ag+
ay+

the ratios A, /B, for all natural numbers n € Z* are called the C-convergents of

3

ContinuedFraction:CDualConvergent

For any irrational @ € R\Q with associated C-dually regular continued fraction
& of the form

E=2bg-14+ ———,

1

b2+

b3+b;%
the ratios A, /By, for all natural numbers n € Z* are called the C-dual conver
gents of &.

ContinuedFraction:CDuallyRegularFraction
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Let ¢ be a continued fraction of the form
2
26

§=2b0—1+
2b1+

2 b2+

2,
by+

2[>3+2

where bg e Z, b, € Z*, and e, , satisfies
+1 forU,,=C
2n=\ 21 forUy,=FE

forallne Z*. Here, the elements U; come from the dually regular chain
representation

viertovhity, vt oty vt

of a related complex number & and the matrices Vy, C, and E; are defined to be

v _(1 i)
17lo 1
c—( 1 12-1)
1= g
1 0
E, = .
! (1—i ,z)

ContinuedFraction:CDuallyRegularPurelyPeriodicFraction

A C-dually regular continued fraction ¢ of the form

§=2b0—1+

is said to be purely periodic if both sequences {by, bs, bs, .. } and {e,, €4, €6, ... }
are both purely periodic.

ContinuedFraction;CFraction
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A generalized continued fraction & is called a C-fraction if it has the form

a; z1
& =Do + T
14 2L

az 23
142
14---

where bg € C is an arbitrary complex number and where a,, and «a,, are
sequences of nonzero complex numbers and of integers, respectively. This
definition can be made more precise, however.

Let P(z)=Co+C1Z+Cp 2%+ -+, Cg £ 0, be a formal power series with coefficients
¢ € C. The generalized continued fraction & of the form

a; zn
fc=Co+

is said to be the “torresponding continued fraction’to P (i.e., a C-fraction)
provided its elements satisfy the “torrespondence relations”

p0
Op1
(Cn- Cn-1, Cn-2, - ) =
Op2
0 f0ra0+..-+ap<h<a1+...+ap+l
(_1)p apas - - ap+l forn =@+ +ap+1’

where ¢, ; denotes Kronecker 3 delta.

In some ways, C-fractions appear to be the most far-reaching of the families of
fractions generally defined, though as their definition suggests, they appear
particularly often in literature on the theories of formal power series. They also
appear quite frequently in the study of Padé approximants, so much so that
subclasses of C-fractions (regular C-fractions, for example) are often classified
and studied based on correspondences with Padé approximants.

ContinuedFraction:ChanExpansion
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Let 0 < ¢ <1 be a real number. For any integer m = 2, Chan 3 continued fraction
expansion is defined through

< §iam 4+ (1-6j,)(Mm-1)yma

=1 1
The coefficients a, can be calculated through
an = Tlm(Tnm_l(f))

where
|-log,,(x)| forx#0
X) =
Im(X) { ) forx=0
and
1 1 1 1
Tn(X) = { m(mr ~ 1) when iz i <x=
0 forx =0.

ContinuedFraction:CommonNotations

Common notations for the generalized continued fraction

a;
f = bo + 2
1+ 2a3
2+ bs+
include
a; ap az
E=bg+ ———..
b1+ b2+ b3+
a I as I . .
E=bg+ +.. (Pringsheim)

az
o [e " [bs
(a1, @z, ag, .. ; bo, by, by, b, .. ) (Leighton and Wall)
and
E=bg+ 12 % (Gauss).

k=1 by

In Gauss 3 notation, the uppercase K stands for “Kettenbruch,”’which is German
for “tontinued fraction.””
Common notations for the nth convergent of a continued fraction include p,/qn

and A, /B, the former being more prevalent in older papers and the latter
being more common in the recent literature. Here, the notation A, /B, is used.

ContinuedFraction:ComplexContinuedFraction
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A continued fraction ¢ of the form
ap

é—‘:

az

b1+

a;
b2+ 2

ba+:-

is said to be a complex continued fraction if for each k=1, 2, 3, .. , a, by €C.

ContinuedFractionConditionForTrivialClassNumber

Let d be a squarefree integer, F be its quadratic field, and n be the class number
set of F. Given

dmod4=2\/dmod4=3

then n=1if and only if d has the monadic expansion property.

ContinuedFraction;:Continuant

The multivariate polynomials K,, (continuants or continuant polynomials) are
defined through

KoO=1
Ki(x1) =g
Kn(Xla ey Xn) = anl(xlf ey anl) Xp + Kn—Z(Xln ey XI’]*Z) forn =2

ContinuedFraction:Convergence

A continued fraction ¢ of the form
a;

a

E=Do+

ag
b2+b3+...

with nth convergent &, is said to converge to a value x if & —» X as n - . In the
case where &, > + o0, £ is said to be inessentially divergent; if lim,_. &, fails to
exist, £ is said to be essentially divergent.

Note that £ —» x as n — co occurs precisely when &, » x and & ,_1 » X as n - co.
Also, while notationally similar to convergence of a real sequence, say, contin®.
ued fraction convergence is considerably different. Unlike with convergent
series, for example, omission of a finite number of initial terms of a continued
fraction can completely change convergence-related behavior.

ContinuedFraction:Convergent
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Given a continued fraction ¢ of the form
ap
§=bo+ ——7—,
bl + 2

az
bo+
2 +

[

its nth convergent &, is the finite continued fraction obtained by truncating ¢ at
the nth level, i.e.,

a
§n=b0+ -

Writing &, = A, /By, it is easily verified that the partial numerators and denomi’
nators of &, satisfy the recurrence relations A, = a, An_1 + bp An_o,
Bhn=a,Bn.1+byByoforn=1, 2, .. provided one defines A_; =1, Ag = by,
B_,=0,and Bo=1.

ContinuedFraction:ConvergentDenominator

Given a continued fraction ¢ of the form
ap
bl + 2
b2+

ag

[

its nth convergent denominator B, is the expression in the denominator of the
nth convergent &, = A, /B, where &, is the finite continued subfraction of the
form

§n=b0+

ContinuedFraction:ConvergentNumerator

Given a continued fraction ¢ of the form
ap
£=bo+ ———,
bl + 2
b2+

ag

byt

its nth convergent numerator A, is the expression in the numerator of the nth
convergent &, = A, /By, where &, is the finite continued subfraction of the form

a
§n=b0+ a
b1+ 2

a3

b+ —
e
by
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ContinuedFraction:ConvergentRecurrenceRelations

The nth convergent &, = A, /B, of a generalized continued fraction

& =bg + K (an/bp) consists of elements A, B, which satisfy the recurrence
relations A, =b, An_1 +an An_2, Bh=bnB_1 +anBh_2,n=1, 2, 3, .. , subject
to the initial conditions A_; =By =1, B_; =0, Ag = bg. Modulo the initial
conditions, this recurrence relation can be written in shorthand by way of
matrix operations, namely

A A-1 An_
( B, ) - b”( B s )+ a“( Bi)
forn=1,2,3, .. .
The above-mentioned identity is a specialized case of the more general theory
of three-term recurrence relations. Indeed, a sequence { Xy} _; of complex

numbers is a solution of the so-called three-term recurrence relation

Xn=bpn Xpo1 + & Xp_2

provided that all consecutive triples of its elements are solutions where, here,
an, bheCforn=1,2,3,.. anday=+0 for all k. In addition to the identity
given above, one can easily show that the sequences {A,}, {Bn} associated to ¢
actually form a basis for the solution space L of the three-term recurrence
relation. A considerable amount of information concerning the role of contin™.
ued fractions in three-term recurrence relations and minimal solutions thereto
can be found in the works of Pincherle and Gautschi.

ContinuedFraction:CRegularFraction
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Let ¢ be a continued fraction of the form
2 €1
2

2¢

§=2a0—1+
2a1+

2a+

2a3+2a +
where ag € Z, a, € Z*, and e, ,_; satisfies

+1 for U1 =C
€2n-1= -1 for U2 n-1= El

foralln e Z*. Here, the elements U; come from the regular chain representation
vty vatovatygvaEttovy

of a related complex number & and the matrices V4, C, and E; are defined to be
v _(1 i )

7o 1

Cz(l—i i

E—(l 0)
YV 1-i i)

ContinuedFraction:CRegularPurelyPeriodicFraction

A C-regular continued fraction ¢ of the form
2 €1
2

2¢€3

52230—1+

2a; +
2a,+

2ag+
3 2a4+~

is said to be purely periodic if both sequences {ag, a1, a,, .. } and {ey, €3, €s, ... }
are both purely periodic.

ContinuedFraction:Divergence
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Divergence of a continued fraction & of the form
ap

az

§=Dbo +

bl+

az
ba+--

bz+

with nth convergent &, occurs when &, fails to converge to a finite expression as

n— oo.

Two distinct types of divergence are defined: In the case where &, » oo, £ i
said to be inessentially divergent while ¢ is said to diverge essentially provided
that lim,_., &, fails to exist. Essential divergence can be examined by consider™.
ing the even and odd convergents &, and &, ,_1 Of &, respectively, and in
particular, £ will essentially divergent provided that either of lim,_..&n,
lim,_.&2n_1 fails to exist or in the case that both limits exist but are unequal.

ContinuedFraction:EllipticContinuedFraction

A p-periodic continued fraction £ = K(a,/by) is said to be elliptic if S, is elliptic,
i.e., if IR =|R&)| =1, R+ 1. Here, S, is the Mdiws transformation defined for

all w e C by the approximant function

a;

Sn (w) = a
bl + as

+b:7iw

b2+

and R is the ratio

R { i—ﬁ forc+0,a+d+0

-1 forc+0,a+d=0

associated to S, = (aw + b)/(cw + d) where u=\/l—4A/(a+d)2 ,
A=ad-bc=0.

ContinuedFraction:EulerFraction

Given a sequence of complex numbers a,, with a,, £ 0, the Euler fraction is the
generalized continued fraction
K
n=1 0 forn=1
1 .
zan Otherwise

—an 2

ContinuedFraction:EvenPart
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Let X = [bg; by, b, ... ] be an arbitrary regular continued fraction whose kth
approximant is denoted x, = A, (X)/By (x). Then the even part of x is the
sequence {X, X4, .. } Of the even approximants of x.

ContinuedFraction:Expansion

Given a constant c, a regular continued fraction expansion is an expression of
the form

> a
§=b0+K—k
k=1 by

with partial numerators a, and partial denominators b, taken from some
domain, usually positive integers, such that £ =c.

ContinuedFractionExpansionHurwitzApproximationQuality

Let z be a complex number with —-1/2 <Re(z)<1/2and -1/2<Im(z)<1/2
with Hurwitz continued fraction expansion

with N possibly infinite and A, /B, the sequence of convergents. Suppose B is a
Gaussian integer with |B,,_1| < B < |Bn,1| and A is a Gaussian integer with
A/B=+A,/B,. Then

Al 1 Anl|Bn
z——|=—|z—- —||—

Bl 5 B, B
for all n.

ContinuedFractionExpansionHurwitzBoundedPartialDenomi

nators

Let z be a complex number with Hurwitz continued fraction expansion
< 1

7= bo + K —.
k=1 b

Then for every even integer d there exist nonreal algebraic numbers of degree d
over Q such that the Hurwitz expansion has bounded partial denominators by.



Results.nb | 75

ContinuedFractionExpansionHurwitzConvergentDenominat
orGrowth

Let z be a complex number with —-1/2 <Re(z)<1/2and -1/2<Im(z)<1/2
with Hurwitz continued fraction expansion

N 1
=K =
k=1 b

with N possibly infinite. Then the denominators of the convergents A, /B,

satisfy
|Bn+2| 3
> —
Bal 2

for all positive integer n < N.

ContinuedFractionExpansionHurwitzQuadratic

Let z be a complex number that is the root of a quadratic equation with Gaus'
sian integer coefficients with Hurwitz continued fraction expansion

<1
Z=bQ+K—.
k=1 by

The b; are defined through

1 1
T(X)=——{—

X X
bo=|_X

1
tﬂ_ .

()

Then only finitely many different 7J(x) exist for x = z.

ContinuedFractionExpansionsOfRational
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Let @ be a rational number where 0 < a < 1; then it has exactly two regular
continued fractions that are finite:

N 1
H=K —

n=1 bl,n
and

N+1 1
H=K —

n=1 bz,n
where

(b1 >0 A Vo bin=0AVns1inbon=0A
V<N b1,n = b2,n A-1+ bl,n = b2,n A I32,N+1 = 1)-

ContinuedFraction:FamilyTypes

A continued fraction & is called a C-fraction if it has the form

a, zn
§c=bo+ —,

ez
1+ v

where by € C is an arbitrary complex number and where a, and «, are
sequences of honzero complex numbers and of integers, respectively. The “C”’
stands for “torresponding type,’”as fractions of this form correspond to formal
power series P (2) =Co+C 2 +Cp 22+ ---, Co £ 0, ¢, € C.

Given complex sequences aj, a,, .. # 0 and by, b, .. , the continued fraction &;

is said to be a J-fraction or Jacobi-fraction provided it has the form
a;

The continued fraction &y is said to be an M-fraction provided that, for
sequences of complex numbers Fy, G, € C,
F1

ém=
1+Giz+ 2R

zF3
1+Gz Z+:--

1+G, z+

Fractions &, of the form
(4

&th =
e1+dlz+ 2z

C3Z

er+dy z+

eg+dy z+---

are said to be a generalized Thron fractions when d,, € C, ¢, e, € C\{0} for
n=1, 2, 3, .. . They can be further classified by examining c,, d,, ex:

= Fractions with e, =1, ¢, = F,, and d,, = G,, are called Thron fractions or
generalized T-fractions.

e Thron fractions with F, = 1 for all n are called T-fractions.
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= Thron fractions for which F,, G, > 0 for all m are positive T-fractions.

= Thron fractions for which Fy,, G, € R\{0} satisfy the conditions F, ,,_; Fo, > 0,
Fom-1/G2m-1 > 0 are called alternating positive term fractions (APT) fractions.
The continued fractions &5 of the form

a; z
&=

az
1+ Y

1+
are called Stieltjes-fractions or S-fractions provided a, € R*. Any continued
fraction f which satisfies B (f(a(z))) = g (z) is called a modified S-fraction for g
an S-fraction, a, B : ) c C —» C meromorphic functions.

A continued fraction &p is said to be a P-fraction if

& =Dy

1
b1+

1
b+ ——
2 [

where foreachn=0, 1, 2, .. , b, =b,(1/2) is a polynomial in 1/z.
Given a function f, the Thiele-fraction is an interpolating fraction &,pp, of the

form
Z—12p
Eappr = bo + b —
+ [ —_—
1 b2+ 7-2,

g+
where here, the elements z,, are distinct points at which values of f are known
and the elements b, are formed from the inverse differences of f: by = ¢g [20]
and by = ¢y (20, .. , Z¢] fork=1, 2, .. .

A fraction of the form
€1

is said to be a A4-fraction provided that for g = 3 odd, Ay = 2 cos (7/q), bg € Z,
bhez*forn=1,2, . ,and e, e{+1} forn=0. When q=5, 1, =¢, and the
resulting fraction &, = ¢; is said to be a 7-fraction.

ContinuedFraction:FiniteDerivative
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Given a finite generalized continued fraction &, y = &y n (2) Of the form
an

fn,N =

b + ani1
n

an+2
bn1+
n+1 LAy

N

by

where a, = a, (z) and by, = by (z) are complex-valued analytic functions for all

k=n,n+1,n+2, ., N, the derivative of &, y with respect to z is given by
d (N a N . L1 (N a2\ (N a\tda db;
_K_kzz(_l)J—n+1 H_K_" K2l 2_271|

dz \k=n by pa wen Ak L=k b, =j b, dz dz

Moreover, cl.fn,N/clz is an analytic function for all z for which (z, 0) € G, where
Gc YN QxB(0, Rg) c (C U {oo})?
is the domain of analyticity of the sequence {g,(z, ¢)} defined by
ay(2)
b (@) +¢ )

where ¥, respectively (, is the domain of analyticity for the sequence {a,(z)},
respectively {b,(z)}, and where Rg < co is Some positive radius.

0 2 = (1@, G2z 0) = (Z

ContinuedFraction:FinitePartialDerivative



Given sequences {ay}y ; = (a2}, and {by 2 ; = {b (@)}, of complex-valued
functions analytic on domains ¥ and (), respectively, for which a, # 0 for Kk <N
for some N and in which all a, and by .., are constant, applying
dz=(9b,/8z)"* db, to the derivative formula

d Noa ) (N a Yt da  db
)L R RER
dz \k=n by i=n o ak =k by =j b, dz dz
yields

0

N aj
=(-1
3b/(k1bk) “ )n [ka]

in the event that neither b, nor db,/d z vanishes. The so-called determinant
formula along with the three-term recurrence relation

Bm= bm Bm-1 + @m Bm_2,
B_; =0, By =1, satisfied by the finite convergents of K(ak/bk) allows this
k=1

partial derivative expression to be rewritten as

2

B(IN{ak) (klbk ket b

ab/ klbk (K a /IE_ ]B .
- 14

k=1 P k=1 b

ContinuedFraction:FormalDenominator

Let ¢ be a regular continued fraction of the form & = [ay, a, .. , a,] whose
successive quotients a, are taken from either R or C for k=1, 2, .. . The nth
formal denominator of ¢ is then the element B, in the identity

(3 o)(T o) o))

ContinuedFraction:FormalNumerator

Let £ be a regular continued fraction of the form ¢ =[aq, a,, .. , a,] whose
successive quotients a, are taken from either R or C for k=1, 2, .. . The nth
formal numerator of ¢ is then the element A, in the identity

(5 o)(T 0){5 o)lo) e
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ContinuedFraction:GeneralConvergence

A generalized continued fraction Kak/bk converges generally to a value f C
k=1

if there exist two sequences {vy}pr, and {w};>; of extended complex numbers
such that

lim S, (v,) = lim Sp(wy) = f
N—oco

N—oo

and

lim inf S(wp,, vp) >0,

N—oco
where S, (w) is the nth approximant and S(w,,, v,) denotes the chordal metric
on the extended complex plane C.

ContinuedFraction:GeneralThronFraction

A generalized continued fraction ¢ of the form
(4

e1+d12+ 2z

C3Z

ey+dy z+e3+da o~

is said to be a generalized Thron fraction provided that d, € C and ¢, e, € C\{0}
forn=1, 2, 3, .. . Note that the “Standard”’Thron fraction is a specific case
where e, =1, ¢, = F,, and d,, = G,, for all n; similarly, the T-fraction results from
further assuming that ¢, = F, = 1 for all n, and it follows that other subclasses
of “§tandard’’Thron fractions result from specifying certain restrictions to the
elements of general Thron fractions ¢&.

ContinuedFraction:GrommerFraction

A continued fraction ¢ of the form
Co

&= Bo

Z—Qp— -

Z-a1—

Bra
P
z

-

is called a Grommer fraction if 3, >0 fork=0, 1, 2, .. .

ContinuedFraction:HalfRegularContinuedFraction
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Given sequences of integers a,, b, with forn>0, b, =2, |a,|=1 and
b, + ans1 = 2, the half-regular fraction is the generalized continued fraction

b0+K—.

n=1 b,

ContinuedFraction:HurwitzExpansion

The Hurwitz expansion of a complex number z=a+bi e C is the complex
continued fraction ¢ of the form

N1

E=bo+ K —,

m=1 b,
b, e C for all k, 1 < N =< o0, whose successive elements b, are computed by way
of the Hurwitz fraction algorithm. Explicitly, the Hurtwitz expansion & associ*.
ated to z is computed recursively in terms of its nth partial denominators b,, by
way of the recursion by =|z and

1

(@2
n=1, 2, 3, .., where |z denotes the nearest Gaussian integer to z, 7(z) is the
transformation 7(z) = 1/z — [1/z, and where 7"(z) denotes the n-fold composi*
tion of T with itself. The Hurwitz expansion is a popular alternative to the oft-
studied Schmidt complex fraction expansion and tends to be preferred for its
intuitiveness its computational simplicity.

bn=

ContinuedFraction:IdentityTypeContinuedFraction

A p-periodic continued fraction £ = K(a,/by) is said to be of identity type if S, is
the identity transformation, i.e., if Sy(w) = Id(w) = w for all w e C. Here, S, is

the Mddus transformation defined for all w € C by the approximant function

a;
Sn (w) = a
az

b1+

b2+
o ——
b+

ContinuedFraction:InfiniteDerivative
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Given sequences {ay}y ; = (a2}, and {by 2 ; = {b (@)}, of complex-valued
functions analytic on domains ¥ and (), respectively, for which a, # 0 for Kk <N
for some N and which are constants except for subsequences {a,(2)},c|, {0,(2)},c3s

(oS

I,Je{l, 2, .., N}, the N +1 tail K (ax/by) is defined and converges to a

k=N+1
value £, from which it follows that the infinite continued fraction ¢ given by
a
= " -
L + b2+?—%

has a derivative of the form
d (& a & (A1 (2 a2\ ((s aytda;  db;
—(K —k] =>vi|[]= (K —) ((K l) — - —']
dz \k=1 by i g Ak M=k by =i by dz dz
Moreover, the derivative d¢/d z is an analytic function for all z for which
(z, 0) € G where here,
Gc¥NQxB (O, Rs)c(CU fooh?
is the domain of analyticity of the sequence {gy(z, ¢)} defined by
ax(2) ]
@ +¢)

where ¥, respectively (), is the domain of analyticity for the sequence {a,(z)},
respectively {b,(z)}, and where Rg < oo is some positive radius.

ok (z, = (gk,l (2), G2 (2, 5)) = (Z

ContinuedFraction:InfiniteFraction

An infinite continued fraction is a triple [{an}n21, {Pnloq. {falnzq] Of sequences,
where the a, b, are given complex numbers with a, # 0 for all n, and f, is an
element of the extended complex plane defined as follows.

Let s, be the linear fractional transformation
an

Sh(2) =
" b, +z

forne Z*, S,(z) the approximant function
S1(2) =s1(2)

Sn(2) = Sn-1(5n(2)),

and

fh = Sn(0).

ContinuedFraction:InfinitePartialDerivative



Given sequences {ay}y ; = (a2}, and {by 2 ; = {b (@)}, of complex-valued
functions analytic on domains ¥ and (), respectively, for which a, # 0 for Kk <N
for some N and in which all b, and a .., are constant, applying

dz=(9a,/dz)"* da, to the derivative formula

d © 3 © a,\"1daj dbj
kY-Sl RRR 2

dz \k=1 by i 1 & =k by =j b, dz dz

yields

co
ﬁ

N — S 5
0 k=1
a, K i= 2 - aj

in the event that neither a, nor da,/dz vanishes.

ContinuedFraction:IntegerContinuedFraction

An integer continued fraction (or ICF) is a continued fraction ¢ of the form

where b, € Z foreach k=1, 2, .. .

ContinuedFraction:IntegerPart

Given a generalized continued fraction

f b0+K

k1bk

bg is known as the integer part.

ContinuedFraction:IntermediateConvergent
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Let ¢ be a regular continued fraction of the form

§=Dbo +

1
b1+ 1

[

b2+

with nth convergent &, = A,/B,,n=0,1, 2, .. ,where A, =0, A_; =1,
B_, =1, and B_; = 0 by definition. The intermediate convergents of ¢ are a
collection of expressions of the form

AR AL+ kAL
B ng) B Bn—2 +k Bn—l ’

k=1, 2, .. ,b,-1, which lie between &,_, and &, forn=0, 1, 2, .. . One can
easily show that the collection { }1")} is strictly increasing with respect to k.

ContinuedFraction:JFraction

Given complex sequences a, a,, .. # 0 and by, b, .. , the generalized contin’
ued fraction &; is said to be a J-fraction or Jacobi-fraction provided it has the
form

&=

ay

z+b - —2&

ag

z+b2—z+br.__

As it turns out, J-fractions are commonly-used tools in the theory of formal
power series and are related to so-called C-fractions in very specific ways
pertaining thereto. In fact, one well-known result shows that under certain
conditions, a formal power series F(z) has a C-fraction expansion if and only if
it has a J-fraction expansion. J-fractions are also particularly relevant to the
theory of moment problems, as well as in the study of orthogonality among
families of polynomials.

ContinuedFraction:JFractionEquivalentPowerSeries

Let £ be a J-fraction of the form
Qo

= a
b]_ +Z - =
bg+z—---

by+z-

and let A (z), respectively By(z), denote the kth partial numerator, respectively
denominator, of ¢ so that the ratio A, (z)/By (z) denotes the kth approximant of
¢. The equivalent power series of the J-fraction ¢ is the uniquely determined
power series P(1/z) whose expansion in descending powers of z agrees with the
descending powers of z in Ay (z)/By (2) for the first 2k terms, k=1, 2, 3, ... .
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ContinuedFraction:KPeriodicFraction

A general continued fraction £ =bg + K (am/br,) is said to be k-periodic for some
fixed positive integer k if the sequences {an,} and {b,,} are k-periodic after the
first N elements, i.e., if ay,k psqg = ans+q AN Dy piq = bnig Where Ne Z7 is
fixed, p=1, and q e {1, 2, 3}. Explicitly, then, a three-periodic fraction £ has the
form

ai ap an  an+1  an+2 ANtk AN+l AN+2 an-k

b1+ by + by + bni1+ bngz + Pk + Pnir + Dniz + Dk +

for some fixed natural number N.

k-periodicity plays a significant role, e.g., in studying continued fraction conver
gence, in particular the study of convergence by way of tail sequence analysis.
Such ideas are explored in greater detail in the works of Lorentzen and
Waadeland.

ContinuedFraction:LambdaSubQFraction

Let A =2cos (7/q) where g = 3 is an arbitrary odd integer. Given bg € Z,

b,ez*forn=1, 2, .. ,and ¢, € {x 1} for n =0, one can define a generalized
continued fraction ¢, called the a A4-fraction which has the form

€1

&, =bo Aq+
! Aq b1+ 2

€3 N
Ag byt ——
q 2 Aq byt

By definition, A4-fractions are obvious generalizations of the 7-fraction (namely,
the r-fraction is merely the As-fraction since the golden ratio ¢ = A5); as a
result, fractions of this form are useful in many of the same ways as the -

fractions and tend to come about by way of studying algebraic number fields
generated by elements of the form A,.

ContinuedFraction;Limit
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Let ¢ be a generalized continued fraction of the form
a;
§=Dbo +

b]_ + 22

az
bo+
2 +

by+---
whose elements a; and b; are positive integers and let &, = A, /B, denote the

nth convergent of &, i.e.
a;

§n=b0+

a
b1+ 2

a3
by +—
Ly
by

If the sequence &, = A, /B, converges to a real number a as n - oo, then ¢ is
said to represent a and « is said to be the limit of &.

ContinuedFraction:LimitPeriodicFraction

A limit periodic continued fraction is a continued fraction
& =K(b,/1)=10; by, by, .. ]such that, for some complex number b,
lim,,bh=b # co.

ContinuedFraction:LoxodromicContinuedFraction

A p-periodic continued fraction £ = K(a,/by) is said to be loxodromic if S, is
loxodromic, i.e., if |R| = |R(&)| < 1. Here, S, is the Mddus transformation

defined for all w € C by the approximant function

a
Sn (W) = :

and R is the ratio
{ U forc+0,a+d+0
R =

1+u
-1 forc+0,a+d=0

associated to S,, = (@w + b)/(cw + d) where u=\/1—4A/(a+d)2 ,
A=ad-bc=+0.

ContinuedFraction:MFraction
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The generalized continued fraction &y, is said to be an M-fraction provided that,
for complex sequences F,, G, € C,
F1

m =
1+Gyz+ zf

zF;

1+G, z+ Tz

Defined similarly to the J-fraction, M-fractions correspond conceptually to the
expansion of formal power series F(z) at two points whereas the J- and C-
fractions consist of expansions about a single point. First considered in the
seminal paper by namesakes Murray and McCabe, M-fractions have proven
especially useful in the approximation by rational functions of several large
classes of functions.

ContinuedFraction:ModifiedSFraction

Given an S-fraction g along with meromorphic functions a, B: Q c C - C, any
(meromorphic) continued fraction f which satisfies B (f(a(z))) = g (2) is called a
modified S-fraction. Defined to extend the applicability of “Standard’’S-frac™.
tions, modified S-fractions maintain many of the same useful analysis-theoretic
properties thereof while providing a wider range of generalized solutions to
various types of problems including moment problems and problems pertaining
to functions of Hankel, Bessel, etc.

ContinuedFraction:NearestintegerContinuedFraction
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For a real number a € R, the nearest integer continued fraction (NICF) associ’
ated to « is the regular continued fraction ¢ of the form

N 1

é=bo+ K —
m=1 b,

where, here, successive elements by, k=1, 2, .. , are integers found using the
NICF expansion algorithm. Explicitly, the NICF ¢ associated to « is computed
recursively in terms of its nth convergents &, by way of the identity
n=Dbn+ St )

§n+1
where by, € Z is the nearest integer to ¢y, €1 € {1}, | — byl <1/2, and
sgN(en+1) = SgN(&yn — by).
Given a real number @ with known continued fraction expansion
&=1[bg, by, .. , bn, Bnsrl, byeZ fork=1, 2, .., n, B €R, Hurwitz discovered
a result for determining whether ¢ is the NICF expansion of a. In particular, & is
the NICF expansion of a precisely when:
1. |b=2fork=1,2,. ,n
2. b;,1 is negative when b; = 2 and is positive when b; = -2

3. Brsr =2 0r By <—2and by - 1/Bns1l > 2.

ContinuedFraction:ParabolicContinuedFraction

A p-periodic continued fraction £ = K(a,/by) is said to be parabolic if S, is
parabolic, i.e., if R=R(¢) =1, S, # Id. Here, S, is the Mdbus transformation

defined for all w € C by the approximant fucntion
a;
Sn (w) =

b1 + &

ag
an

b2+
e ——
b+

and R is the ratio

X { t—ﬁ forc+0,a+d+0

-1 forc+0,a+d=0

associated to S, = (aw + b)/(cw + d) where u=\/1—4A/(a+d)2 ,
A=ad-bc=+0.

ContinuedFraction:PartialDenominator
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The partial denominators of a generalized continued fraction ¢ of the form
N

a
f = bo + K -

m=1 b,

are the elements b,, k=0, 1, 2, ... .

ContinuedFraction:PartialNumerator

The partial numerators of a generalized continued fraction ¢ of the form

N a
§=b0+K -

m=1 b,

are the elements a,, k=1, 2, 3, ... .

ContinuedFraction:PerronCaratheodoryContinuedFraction

Given sequences of complex humbers a,, 8, with a,, # 0 and
@2ns1 =1 - Bon Bons1, the Perron-Carathé odory continued fraction is the
generalized continued fraction
a; forn=1
[ apz forn>1odd

o |1 for neven
ﬂo + K
n=1 Bnz forneven
Bn  fornodd

ContinuedFraction:PFraction
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A generalized continued fraction &p is said to be a P-fraction if

1
& =ho —
b1+

1
b2+b3+---

where foreachn=0, 1, 2, .. , b, =b, (1/2) is a polynomial in 1/z. Symboli’
cally, then, one can think of the elements b, of & to be of the form

0
b= > ahz" n=0,1,2, .,

m=-N,
where N, > 1 and a(h','n) #0forn=1, 2, 3, .. . Continued fractions of this type
emerged as part of the work of Magnus while attempting to create a theory of
fractional expansions of meromorphic functions analogous to the theory of
continued fraction expansions of real numbers. The name P-fraction refers to
the fact that, for all n, the continued fraction [by; by.1, bnio, .. ]is defined to be
the so-called principal part expansion for the Laurent power series L,(z) where

L, ()= Z a®z™ n=0,1,2,.. .

m=—N,

P-fractions are also related to the study of Padé approximants.

ContinuedFraction:PippengerFraction

A Pippenger continued fraction is a continued fraction of the form
1

-1 14— 1
+tl[ " —1+tz(1+;))

—14ty(. )

E=1+

where t, € Z* and t, = 2 for Pippenger continued fractions 1 < ¢ < 2.

ContinuedFraction:PositivePerronCaratheodoryContinuedF
raction



Given a sequence of complex numbers d, with d, # 0 and |d,| < 1, the positive
Perron-Carathé odory continued fraction is the Perron-Carathé odory continued
fraction

-2dg forn=1
1-|dn-12/?z forn>1odd
o | 1 forneven
do + K
n=1 z forn=1

d,2z  forneven
dn-12 forn>1odd.

ContinuedFraction:PositiveThronFraction

A Thron fraction ¢ of the form
Fl z

&=
1+Gyz+ 2

zF3

1+G, z+ Tz

is said to be a positive Thron fraction or a positive T-fraction if F,, G, > 0 for
all m.

ContinuedFraction:ReallFraction

A J-fraction ¢ of the form

a
§=

Z+b1— &

a3
z+b2——z+b3__”

is said to be a real J-fraction provided that a,, > 0 and that b, € R for
m=1, 2, 3, .. . Subtly, real J-fractions are connected to both C-fractions and
modified S-fractions in the following way: A modified regular C-fraction & of

the form
a1

fe=—"1—

a.
2+ —=2
1+——

Z4--n

is a real J-fraction provided that it is also a modified S-fraction. As a result,
many of the practical applications of C- and modified S-fractions are inherently
applicable to real J-fractions as well.

ContinuedFraction:RegularCFraction

There are at least two distinct definitions for a reqular C-fraction in reputable
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literature.
Some sources say that a C-fraction ¢ of the form
E=bo+ f& amz”m’

m=1 1
am € C\{0}, is regular provided that ¢, = 1 for m = 1. Regular C-fractions which
fall under this definition have strong connections to the theory of Padé
approximations.

For the second definition, let P (z) =cg + ¢, 2+ ¢ 2% + -+, Cg # 0, be a formal
power series with coefficients ¢, € C and let £ be its corresponding continued
fraction (i.e., its C-fraction) of the form

a, zn
E=Co+ L, ar

)
14...

subject to the “torrespondence relations™

0p,0
Op1
(Cn! Cn—l: Cn—2, ) =
0p2
0 fOI’a0+...+ap<n<a1+...+ap+l
(-DPajap--- aps1 forn=aq+--- + py1,

where ¢; ; denotes Kronecker 3 delta. Such a continued fraction is said to be
regular if every approximant £, = A, (z)/Bp (2,n=0,1,2,. ,of ¢isaPadé
approximant of P(z).

There are a number of equivalent statements for the C-fraction & being regular
by way of the second definition, many of which are more explicitly-stated than
the above. For example, if £, = A, (z)/Bp (z) denotes the pth approximant of &

and if the numerator, respectively denominator, of £, has degree s, respec".
tively t,, then ¢ is regular if and only if there exists a sequence {r,} of natural
numbers satisfying
ar+ap+ -+ @pr=rp+Sy+t,+1,
p=0, 1,2, ...Moreover, this is equivalent to requiring that, forp=1, 2, 3, ...,
Sop-1 = a@itazt-+aopg

by = ax+ag+ - +azy,

while simultaneously requiring the existence of a sequence {k,} of integers
which satisfy

IA

32p t2p+kp

\%

S2 p+1 t p+1t kp +1

%

S2p+1 t2p+kp+1
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Sopr1 = Topr2a+Kp
forp=0,1,2, . .

As exemplified in the definition above, regular C-fractions are intimately
connected to the study of formal power series and Padé approximants, as well
as to the study of meromorphic complex-valued functions. Extensive exposition
of this topic can be found in the works of H.S. Wall.

ContinuedFraction:Remainder
Let £ be a real number with regular continued fraction expansion
< 1
f = bo + K —
k=1 b
(with M possibly co for irrational numbers) with convergents A, /B,.
The nth remainder r,, of the continued fraction is defined through
n 1
E=bp+ K ————M—
k=1 (1 - 5k,n) bk + Iy

The nth remainder (also called tail) r, fulfills the following identities:
An-1Tn+ An2

§=Dbo +
Bn—l M+ Bn—2
An_1 1
e |
Bn-1 Bn-1(Bn-1n — Bn-2)

ContinuedFraction:RiccatiSolution

In general, a Riccati differential equation is any first-order differential equation
that is quadratic in the unknown function y(x), and while there are a consider™.
able number of differential equations attributed to Riccati, perhaps the most
commonly agreed upon is the general equation

dy )
—=hX+gXyX+fXx)y (X
d X

where f (x), g (x), h(x) are all continuous functions which are sufficiently
differentiable for which f (x), h (x) £ 0. Devised as a method to approximate
solutions to differential equations of the form y’ (x) = f (x, y) by way of a
second order Taylor approximation in y, a considerable number of solution

techniques have been employed throughout the centuries, perhaps the most
novel of which is the continued fraction solution first employed by Euler which
has since been elaborated and expanded upon in great generality. A brief
explanation of one such variant (stemming from Lagrange, as employed by

KiirilinY fallmwae
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P oYY
Kurilin 3 method is based on approximating y by a sequence y, which is spe™.
cially defined depending upon how the zeroth approximation yy = &g is chosen.
Once & is defined, &, (and hence y,, which depends upon f,, g,, and hy) is
defined recursively by the relation

Yno1=&n1 00 [+ ya 007"

Finally, it follows from a simple analysis that the regular continued fraction &,

defined to be the limit of the convergents A, /B, = [£0; é1, &2, .. , én] @S N — oo,
satisfies the generalized Riccati equation above.

Despite his solution being somewhat involved with a number of cases consid™.
ered, the easiest and perhaps most illustrative of Kurilin 3 defined cases comes

when & = ++/ —h/f . In this case, one can prove that the nth approximation y,
of y satisfies y; = f, (X) yﬁ + On (X) Yn + hpy (X), that &,(x) has the form
h1 (0 = Gn-1 (0 ént (x)]l/2

hn_1(X)
for n = 2 and that for n = 2, the remaining approximant functions f,, gn, hn

fn(x)zi[

satisfy the recursions f, (x) = &n_1 (X) 1 (X),

o1 (X hn_2(x

b= 22 g p 2
‘fn—l(x) fn—z(x)

On= 200 — 001 (0 = o éhp

fn—z +2 On-2 (X)
To complete the recurrence definition, one defines gg (xX) = g (x), fo (X) = f (X),
and hg (x) = h (x), and uses for n =1 the equations

hn(x) 12
LX) == [— }
fa(X)
1) hn-1(X)
On (0 = = gy (0 -2 ——,
En_1(X) &n-1(X)

fr (X) = =hn_1 (X)/&n-1 (X), and hp (X) = —0n-1 (X) + &1 (X)/én-1 (X). A more
detailed derivation can be found in the works of Chisholm.

ContinuedFraction:RogersRamanujanContinuedFraction

Given sequences of complex numbers a, with a, # 0 and complex g, the Rogers-
Ramanujan continued fraction is the generalized continued fraction

oo qn
g5+ K ~.
n=1 1
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ContinuedFraction:RosenFraction

Let & be a real number. Then the Rosen continued fraction expansion for
qeZ", q=3, and Aq =2cos(r/q)

(where N is possibly infinity), ; € {-1, 1}, and b; € Z* can be calculated

through the repeated application of the map 7: [-A/2, /2> [A/2, A/2

sgn(x) sgn(x) 1
T

A X 2

T(X) =
X

ContinuedFraction:RudinShapiroContinuedFraction

Let r = {r,}x, be a sequence whose nth term r,, is defined to be +1 if the
number of occurrences of the string “11°’in the binary representation of n is
even and is defined to be -1 otherwise. The sequence r is called the Rudin-
Shapiro sequence and the regular continued fraction £ =[0; rg, Iy, I, .. ]is
called the Rudin-Shapiro fraction associated to r. This construction can be also
generalized by way of the transformation 1 — a, —1 — b for distinct positive
integers a, be Z*, whereby r, e {a, b} forall k=0, 1, 2, ... .

Unlike the similarly-defined Baum-Sweet fraction, the Rudin-Shapiro fraction is
the focus of considerably more literature, having been generalized and applied
to a variety of problems in areas such as polynomial theory, moment problems,
and multiresolution analysis. Moreover, one of the more well-known properties
of the Rudin-Shapiro fraction ¢ is that it is transcendental, a result which can be
proved by advanced numerical methods found, e.g., in the work of
Adamczewski.

ContinuedFraction:SchmidtExpansion
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The Schmidt expansion of a complex number z=a+bieC, b=0, assignsto z a
complex continued fraction ¢ of the form

ai
0 ay
as

bo+=

b1+

whose successive approximants &, = A, /B, are determined by the Schmidt
regular chain algorithm and whose elements a,, b, are Gaussian integers. The
Schmidt expansion is an alternative to the more widely-utilized Hurwitz expan’
sion and is known for assigning overall more accurate convergents to z despite
having a lengthier and oftentimes slower computational implementation.

ContinuedFraction:SchurNevanlinnaFraction

Given a sequence of complex-valued functions { fs}e2, which satisfy the recur’
sive relation
fs (Z) - fs (0) 1

fo ()= —
1 (2 1-£0)f.(2) z

fors=0, 1, 2, .. , the associated Schur-Nevanlinna continued fraction & for
fo(2) has the form
1 Co

= +
fO(O) 1+ do Z+ #“
1+dy z+- -

o
: 1+d, z+--

Subsequent continued fractions & are formed by substituting & into the afore’
mentioned recursion.

ContinuedFraction:SemiConvergent
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Let ¢ be a real number with regular continued fraction expansion
M1

f = bo + K —
k=1 by

(for M possibly o) with convergents A,/B,.

A fraction p/q is called a best rational approximation of ¢ if

for any integers r and s such that s<qand p/q#r/s.

Every convergent A, /B, is best rational approximation of &, but not all best
rational approximations are convergents of £.

The best rational approximation of ¢ that are not convergents are called semi-
convergents.

ContinuedFractionSemiConvergentRepresentation

Let £ be a real number with regular continued fraction expansion
M1

f = bo + K -
k=1 b

(with M possibly o) with convergents A, /B;,.

All semi-convergents Sy, 4 of £ are of the form

An+9An

Sn’g -

Bn +9 Bn+1
where ge Z* and

bn2
[ = J<g<bn+2
2

and potentially also for g = |bp,2/2].

Semi-convergents have the continued fraction expansion
M 1

Sn,g = b() + K
k=1 6M,k h+ (1 - 6M,k) bk

where M=1, b, >1and 1<h <h,.

ContinuedFraction:SequenceOfRightTails
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Let ¢ be a generalized continued fraction of the form
< b
¢=K =,
m=1 1
b,eC\{0}, k=1, 2, 3, .. , and suppose that ¢ converges to some extended
complex number « € €. Define f© = f and

f — Iz b_m
m=n+1 7

forn=1, 2, 3, .. , The sequence {f(”)};"=O is called the sequence of right tails of

£

ContinuedFraction:SFraction

Consider the family of generalized continued fractions & which have the form
a; z

bg=—TT-,
apz
1+ CT

v
where the elements a, are all strictly positive real numbers. Fractions of this
form are called Stieltjes-fractions or S-fractions due to their prevalence in the
work of Stieltjes and can be viewed as modifications of the other “hamed
families””of continued fractions in several different ways. For example, & can
be viewed as a C-fraction for which by =0, a,eR*,and ¢, =1forn=1, 2, .. ;
at the same time, it can be considered as a modified Thron fraction with

Fn = a, € R and with G, = 0 for all n. From an application standpoint, the S-
fraction is used in the theory of moment problems, as well as in the related
study of formal power and Taylor series.

ContinuedFraction:SingularContinuedFraction

A continued fraction ¢ of the form
N a
f = bo + K il
m=1 bm

(here, N may be infinity) is said to be singular if for all k= 1, b, = 2 and
b, +ay=2.

ContinuedFraction:Singularization
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Singularization of a regular continued fraction is the removal of 13 in the
partial denominators. Let the regular continued fraction of £ have the j™ partial
denominator with value a; =1

E=ap+ ,

then this 1 can be singularized to the new continued fraction
1

f:a0+

ContinuedFraction:SleszynskiPringsheimContinuedFraction

Given sequences of complex numbers a,, b, with for n> 0, |b,| > |a,| + 1, the
SlezyAsky-Pringsheim continued fraction is the generalized continued fraction

b —.
o n=1 b,

ContinuedFractionsOfGeneralizedGaussMap
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Let Ty, ke (—o0, —=1) U (0, o) be the generalized Gauss map

0= [ 1 ‘

k(X) = x x |
Kz kX

Then for some ¢ € (0, 1) the generalized regular continued fraction expansion

e

i=1 b,

can be obtained through
bj =Ty(©®
and inversely
ni1
é=K o= AL B AL B . AL B ALl(co)
i=1 b
j
where the maps A, and B are defined through

X
AX)=k —
1-xX

B(x)=1+X.

ContinuedFractionsOfGeneralizedRenyiMap

Let Ty, ke (—o0, —1) U (0, o0) be the generalized Ré nyi map

: l : ‘
X x |
kKix Lk

Then for some ¢ € (0, 1) the generalized regular continued fraction expansion

e

i=1 b,

Te(X) =

can be obtained through
bj =Ty(®
and inversely
ni1
é=K o= AL B ALLB .. ALB™ A (0)
i=1 b
j
where the maps A, and B are defined through

X
AX)=k —
1-x

B(x)=1+X.



ContinuedFractionsWithGivenConvergents

Let A,, B, forn=0, 1, .. be two given sequences with
Bo=1
AnBn1— A1 B,%0.
Then the continued fraction
E=bo+ IN< X
k=1 b

will have the convergents p, /gy if

bo = Ao
a; =A;1Bg—AgB;
by =By

An-1Bn—AnBn1
ay =

An—1 Bn—2 - Bn—2 Bn—1

An Bn—2 - An—2 Bn

by

An—l Bn—2 - Ar1—2 Bn—l .

ContinuedFraction:SymplecticContinuedFraction

Let M and J be block matrices of the form
M= ( A B )
“\c D

J:(?I tIJ)

whose entries themselves are square matrices, | the square identity matrix of
appropriate dimension. Given a collection {My,, Mn,1, Mo, .. } of matrices
satisfying Mj JM,=J forallk=m, m+1, m+2, .., a symplectic continued
fraction is defined to be the sequence of formal approximants {Ty,_ .., --- m,(c0)},
n=m, m+1, m+2,. ,where Ty(2) is the (matrix) Mddus transformation of

the form
Tw(@Z)=(AZ+B)(CZ+D)1
and where Ty (e0) = AC™! by definition.

ContinuedFraction: TauFraction
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Let ¢ = (1 + V5 ) /2 denote the golden ratio. Then if b € Z is an arbitrary
integer, if the sequence b, is a collection of positive integers forn=1, 2, 3, ...,
and if e, € {+ 1} for each n, then the generalized continued fraction &, of the
form

is said to be a r-fraction. r-fractions are a regular part of the study of algebraic
number fields, particularly the one generated by ¢ = 2 cos (/5).

The fraction gets its name from the golden ratio ¢, which is sometimes also
denoted .

ContinuedFraction:TFraction

A generalized continued fraction &t of the form

z
&r= .
1+G1 2+ ——————
1+G, Z+—1+G3“...
for G, a complex sequence, n=1, 2, 3, .. , is called a T-fraction. Note, in

particular, that T-fractions are specialized versions of the more general Thron
fraction which result from setting F, =1 foralln=1, 2, 3, .. .

ContinuedFraction:ThieleFraction
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The so-called Thiele fraction is a generalized continued fraction &; 5, Of the

form
Z—1p
Eappr = bo + P
bl + b+ 7-2,

byt

where here, the elements z, and b, are specially-chosen complex humbers
defined as follows. Given a function f whose values are known at a collection
{20, 21, .. } of distinct points, z, € C, the collection of inverse differences
¢lzy, .. , 7] for f(z) are formed using the recursive formulas:

= polz¢] = f(z), k= 0.

Zp—2x
e 01z, 2] = —2E— r>k=0.
1lz 2d = o o

Zr=Zp-1
* o/lzg, .. ,Z/]= =1,
¢ilzo d $r-1l20, 1Zr-2,2¢]=¢r-1120, . 1Zp-1]

The Thiele fraction &,ppr Was defined as part of Thiele 3 work on approximation
theory and utilizes the collection {zo, .. , z,} in two ways, both explicitly in its
partial numerators and implicitly by defining bg = ¢g [2g] and by = ¢ [Zg, .. , Z]
fork=1, 2, .. . In this way, the fraction &xppr = Eappr (2) is easily seen to be an
interpolating function for f(z) and as such has a wide variety of uses in the
approximation theory of arbitrary complex-valued functions.

ContinuedFraction: ThreePeriodicFraction

A general continued fraction & = bg + K (an, /by) is said to be three-periodic if
the sequences {a,,} and {b,,} are three-periodic after the first N elements, i.e., if
aN+3 p+q = @N+g aNd Dn.3prq = bnig Where N e Z7 fixed, p= 1, k is a fixed
positive integer, and g € {1, 2, 3, .. , k}. Explicitly, then, a k-periodic fraction ¢
has the form

a; an AN+l an+2  an+3  an+l an+2  Anss

§=b0+
by + bo+  by+ byyr+ b2+ byez + Bnya + bygz + by +

for some fixed positive integer N.

Worth noting is that a 3-periodic continued fraction is just a special case of a so-
called k-periodic continued fraction (for k = 3) where k-periodicity means that
ANtk p+q = @N+q AN Dy pig = bnig fOr N € Z7 fixed, p> 1, k is a fixed positive
integer, and q € {1, 2, 3}. k-periodicity plays a significant role, e.g., in studying
continued fraction convergence, in particular the study of convergence by way

of tail sequence analysis. Such ideas are explored in greater detail in the works
of Lorentzen and Waadeland.

ContinuedFraction: ThreeTermRecurrenceMinimalSolution
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A non-trivial solution {f,};__; of a three-term recurrence relation
Xn = bn Xn—l +an anzy

an, bheCforn=1, 2,3, .. ,a+0forall k, is said to be minimal if for any
other solution {gn},

. fﬂ
lim—=0.
N—oo gn
A general three-term recurrence relation may or may not have a minimal
solution, and any non-minimal solution is said to be dominant.

A number of significant theorems pertaining to minimal solutions of recurrence
relations hinge on the theory of continued fractions. For example, Pincherle
proved that for sequences {a,} and {b,} of a normed field F (with a, = 0 for
n=1, 2,3, ..), the three-term recurrence relation

Xn = bn Xn—l +an Xn—2
has a minimal solution {h,}, h, € F for all n, if and only if the associated contin’
ued fraction ¢ of the form

ooam

m=1 b,
converges in F U {oo} and, moreover, that such a solution satisfies the associ’
ated continued fraction relation
hm —am o ap

Pm-1 bm n=m+1 b,

for all m. A considerable amount of information concerning the role of contin™.
ued fractions in three-term recurrence relations and minimal solutions thereto
can be found in the works of Pincherle and Gautschi.

ContinuedFraction:ThreeTermRecurrenceSolution
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A sequence {X,}n_; of complex numbers is a solution of the three-term recur
rence relation
Xn = bn Xn_1 +an Xn-2
provided that all consecutive triples of its elements are solutions. Here,
an, bheCforn=1, 2,3, .. anda=+0 forall k. A well-known fact in the study
of continued fractions is that the approximants &, = A, /B, of an arbitrary
continued fraction ¢ satisfy the three-term recurrence relation with the initial
conditions A_; =1, Ag=bg, B_.; =0, and Bo = 1.
Continued fractions are connected to the three-term recurrence relation at an
even deeper level as well. For example, one can show that the solution space
for the three-term recurrence relation is a linear space £ of dimension 2 over C
and that the canonical numerators and denominators {A,} and {B,,} of K(a,/bp)
actually form a basis for L. It can also be shown that the recurrence relation has
a so-called minimal solution precisely when the continued fraction
© a.

= i b
converges in C. A considerable amount of information concerning the role of
continued fractions in three-term recurrence relations and minimal solutions
thereto can be found in the works of Pincherle and Gautschi.

ContinuedFraction: ThronFraction
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Consider a generalized continued fraction &5y, of the form
Fi2z

&th= .
1+Gyz+ 2

ZF3

1+G, z+ Touer

where F,,, G, are sequences of complex numbersand F, 0 fork=1, 2, .. .
Such fractions are called generalized T-fractions or Thron fractions after mathe’
matician Wolfgang Thron. In an obvious way, Thron fractions are generaliza™.
tions of the M-fraction obtained by replacing F; # 0 in a standard M-fraction &y
with F4 z. In addition, Thron fractions are often further classified based on
properties of the elements F,, G, of &r,. For example:

= Thron fractions & for which F, =1, n=1, 2, 3, .. , are called T-fractions.

= Thron fractions which satisfy F,,, G, > 0 for all m are called positive T-
fractions.

= Thron fractions for which F,, G,, € R\{0} and which satisfy the conditions
Fom_1Fom >0, Fom_1/G2m_1 > 0 are called alternating positive term fractions or
APT-fractions.

Unsurprisingly, as the expansive classification suggests, the applications of
Thron fractions are also large in number. In the same way that C-, J-, and M-
fractions play crucial roles in the understanding of formal power series, for
example, Thron fractions— and in particular, T-fractions— are critical tools used
in the study of formal Taylor series. Like the above-mentioned M-fractions,
Thron fractions and the offshoots thereof correspond to expansions of these
formal Taylor series at two points. For more information concerning the variety
of Thron fractions as well as other continued fraction results from Thron 3
extensive work.

ContinuedFraction: TwoDimensional

A two-dimensional continued fraction is an expression of the form

© ;XY
£x, y)=Bo+ K =
1 B;
where
) 0
e cVx e« d
Bj=b8)+Kk—+K K~

k=1 1 k=1 1

ConvergenceDomainOfTFractions
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Let & be a Thiele fraction with periodic limits,

¢=K

n=11+bh,z

anz

limay,m,=a'
N—oco

limby,,,=b".

N—oo

Let

D=C-TUK)

be a domain for f which is a meromorphic function with poles V in D. Let K be
a finite set and X be any compact set in D disjoint from V. Let

E= [o, 4(-1)" ]_[a'l
1=1

be a real interval, T be defined by
mo za \f
r={z|z m(al_:[(l L ]) ek,
D;=C-T
be a domain, D, (e) be a disk with center z, in I" of radius €, and
Dy = D31 U D4,(e)
be a domain. Then
Yy, £convergesto fin X,
the number of elementsinK < (=1 +m)m,
if b' = 0, then the number of elementsin K < |m (m - 1)/2],

f has a meromorphic continuation to D; and it has no continuation to D, for
any choice of zg and e.

ConvergenceOfConstantNumeratorContinuedFraction

Let £ be the continued fraction expansion
0 6k,1+ 1_6k,1 C
g datltzda)e

k=1 1
Then & converges for ¢ € C\(—o0, —1/4).

ConvergenceOfDiagonalPadeApproximantsForAnalyticFunc
tionsWithFiniteNumberOfBranchPoints
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Let f be a multivalued holomorphic function, X be a finite set where £ c C,

Q = [Riemann sphere] - X

be the domain of f, g be an analytic continuation of f at infinity on a domain
D, R, be the Padé approximants diagonal for f; then there is a unique domain

D c Q that is maximal by inclusion among domains where R,, converges in
capacity on compact sets to a single-valued g on D.

ConvergenceOfEllipticContinuedFractions

An arbitrary p-periodic elliptic continued fraction ¢ = K(a,/b,) diverges gener™.
ally, and because convergence in the classical sense implies convergence in the
general sense, ¢ elliptic also fails to converge classically. The statement of this
fact can be found in the work, e.qg., of Lorentzen and Waadeland and can be
justified by noting that the sequence {S,(¢£)} corresponding to an elliptic contin™.
ued fraction ¢ is totally non-restrained where here, S, is the Mddus transforma’

tion defined for all w  C by the approximant function

a
Sn (W) = :

Worth noting is that requiring an elliptic continued fraction to satisfy additional
criteria may indeed alter its convergence behavior. For example, the construc™.
tion of an elliptic limit 1-periodic continued fraction which converges can be
found in the works of Gill, who also gives classification criteria for the conver".
gence of limit-periodic continued fractions based on the relative convergence
rates of the (n p)th tail of S,(¢).

ConvergenceOfldentityTypeContinuedFractions
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An arbitrary p-periodic identity-type continued fraction £ = K(a,/b;) diverges
generally, and because convergence in the classical sense implies convergence
in the general sense, ¢ elliptic also fails to converge classically. The statement of
this fact can be found in the work, e.g., of Lorentzen and Waadeland and can
be justified by noting that the sequence {S,(¢)} corresponding to an identity-
type continued fraction ¢ is totally non-restrained where here, S, is the M dius
transformation defined for all w € C by the approximant function

a;
Sn (w) =

73
az

b1+

b2+ o
o
b+

Worth noting is that the aforementioned convergence properties of identity-
type continued fractions identically mimic those for elliptic fractions. Unlike
elliptic fractions whose convergence behavior can be altered by enforcing
additional criteria, the literature mentions no such alterations for identity-type
fractions.

ConvergenceOfLimitPeriodicContinuedFractions

The limit periodic continued fraction ¢ = K(1/b,) =[0; by, by, .. ] converges to
b=1/4if |by—(-1/4)|<1/4(4n*-1)foralln=1,2, ...

ConvergenceOfLoxodromicContinuedFractions
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An arbitrary p-periodic loxodromic continued fraction ¢ = K(a,/bp) converges
in the general sense to one of the two fixed points of the sequence {Sp}, namely
to its attracting fixed point x € C | {c0}. On the other hand, if y denotes the
repelling fixed point of the sequence S, then ¢ is guaranteed to converge in the
classical sense if and only if S (0) # y forallk=1, 2, 3, .. . Here, S, is the

Mddus transformation defined for all w € C by the approximant function

a
Sn (W) = :

Because they are only conditionally convergent in the classical sense, loxo™.
dromic fractions fail to converge uniformly in any nontrivial metric. In addition,
because of the “tloseness”’with which loxodromic fractions & are related to the
parabolic fractions, a seemingly unpredictable pattern of convergent behavior is
obtained by implementing stricter structural rules on &. For example, for ¢ limit
p-periodic, one generally has to consider the value p as well as the speed with

which the elements a,, b, of £ converge to their respective limits. Such details
are covered in more depth in the works of Lorentzen and Waadeland and its
references.

ConvergenceOfPadeApproximantsForExponentialFunction

Let

f(z)=e"

and R, m(z) be its Padé approximants and let p; and g; be the subsequences.
Then given

.ILTO (Pi + 0i) = oo,

it follows that

lim Ry, ¢,(2) = f(2).

ConvergenceOfParabolicContinuedFractions
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An arbitrary p-periodic parabolic continued fraction & = K(a,/by,) converges in
the general sense to the single fixed point x of the sequence {Sp}. Moreover,
because ¢ parabolic if and only if the sequence {Sp} is and because {Sy(w)} can

be shown to converge to x for every w € C, one can easily conclude by way of
analyzing its tail-values that ¢ also converges to x in the classical sense. Here,
Sy is the Mddus transformation defined for all w € C by the approximant
function

a
Sn (W) = :

Lorentzen and Waadeland point out that despite their apparent good behavior,
parabolic continued fractions fail to converge according to other, more strin™.
gent definitions. For example, one can show that & parabolic still fails to con™.
verge uniformly to x in C U {c0}, even when the metric considered is the
chordal metric. In addition, because of the “tloseness”’with which parabolic
fractions & are related to the always-divergent elliptic fractions, a seemingly
unpredictable pattern of convergence behavior is obtained by implementing
stricter structural rules on &. For example, for & limit p-periodic, one generally
has to consider the value p as well as the speed with which the elements a,, b,

of & converge to their respective limits. Such details are covered in more depth
in the works of Lorentzen and Waadeland and its references.

ConvergenceOfRogersRamanujanContinuedFractionAtPrimi
tiveRootsOfUnity

Let R(g) be the Rogers-Ramanujan continued fraction and K(q) be
1/5

Kl@)=—-.
R(Q)

Then there exists an uncountable constructible set G c {z: |z| < 1} such that K(y)
does not converge generally for all y € G.

ConvergenceRadiusOfPadeApproximantRows
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Let f be a meromorphic function, and D(m) be the largest complex disk where f
has less than or equal to m poles, and d(m) be the divisor of its poles.

Let T n be the mth row Padé approximants, Ry, be the radius of D(m), a be an
element of C — 0, U(a) be the poles converging from T, , at a,

u(a) = the number of elements in U(a)
Qn,m be the Padé approximants denominators and Qy, ,, be the spherical normal
izations of Qn m,
A(@) = lim sup|(Q;, ) (a)|l/",
n-oco
Pm be the set where au(a) > 1, and
Em ={{a, u(@}|a € Pn}
be a divisor. Then
al

Yaep, Rm=—

A@)

d(m) =e,.

ConvergenceRadiusOfPadeApproximantRowsWithMPoles

Let f be a meromorphic function, and D(m) be the largest complex disk where f
has less than or equal to m poles. Let T, , be the m th row Padé approximants.
If the number of poles in D(m) is exactly m, then T, , converges to f in the
chordal metric on the Riemann sphere.

ConvergenceSetBoundednessForComplexContinuedFractio
nProducts

For any set E of complex numbers, denote by Vg(E) the set of all finite contin™.
n
ued fractions K 1/b; with elements by, € E. Call a set S a convergence set of
i=1
n
type B if by, € E for all m = 1 ensures the convergence of K 1/b;. Then if
i=1

z=-1is not a limit point of Wg(E) ={u-v: ue Vg(E), ve Vg(E)}, E is a conver

n
gence set of type B for K 1/b; if and only if Vg(E) is bounded.
i=1

ConvergenceSetBoundednessForComplexContinuedFractio
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nsums

For any set E of complex numbers, denote by V,(E) the set of all finite contin™.
n
ued fractions K a;j/1 with elements a;,, € E. Call a set S a convergence set of
i=1
n
type A if a;,, € E for all m > 1 ensures the convergence of K a;j/1. Then if
i=1
z=-1is not a limit point of WA(E) ={u+V: ueVa(E), veVa(E)}, E is a conver

n
gence set of type A for K a;/1 if and only if VA(E) is bounded.
i=1

ConvergenceSetBoundednessForRealContinuedFractionPro
ducts

For any set E of real numbers, denote by Vg(E) the set of all finite continued
n

fractions K 1/b; with elements b, € E. Call a set S a convergence set of type B
i=1

n
if by, € E for all m = 1 ensures the convergence of K 1/b;. Then E is a conver-.
i=1

n
gence set of type B for K 1/b; if and only if Vg(E) is bounded.
i=1

ConvergenceSetBoundednessForRealContinuedFractionSu
ms

For any set E of real numbers, denote by VA(E) the set of all finite continued

n
fractions K a;/1 with elements a,, € E. Call a set S a convergence set of type A
i=1

n
if a;, € E for all m > 1 ensures the convergence of K a;j/1. Then E is a conver™.
i=1

n
gence set of type A for K a;/1 if and only if VA(E) is bounded.
i=1

ConvergenceTheoremForPeriodicintegralContinuedFractio
nsWithVariableUpperLimits
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Let
i wra(te — 1, 7)
Kity=D il S LA

k1t bre—1, 1)

be a periodic integral continued fraction, 7, be the periodic integral continued
fraction integration limit set of K(t), a(r, £) and b(r, &) be continuous complex-
valued functions on the domain Q = [tg, T]x[tg, 7], and A.(t) be the rth
convergent.

Write 7¥ for (ry — 1, 1) and set
b(") fork=n

Q Tk — ~ Tk+1
k,n( ) {b(Tk)-i_ngle(k%n)(lk*l)di-kl fOI’lSk/\k<n

Then given g(r, £) is a continuous function such that |Q »(7*)| = g(r, &), K(t)
converges absolutely and uniformly and

-2r-1 Mr+1 (t—to)“’l

m
K = Add] < it

where
M=max(tp<é<7<T, |a(t, &)
m=min(tp<&<7=<T, |g(r, ).

ConvergenceTheoremForSequenceOfEvenApproximants

Let a be an arbitrary complex number and let p > |a|, p=|a+ 1|, and € > 0. Let
the elements b, of the continued fraction £ =[1; by, b,, ... ] satisfy

{ bono1=C3,4 foricon_1+ial<p
bon1=C3,4 foriconzi@a+21)=p

and |bo,| = —la+ 1| + p? + €. Then the even part of £ converges to a value v
which satisfies |[v — (a + 1)| = p.

ConvergentsDenominatorGrowth
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Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation
< 1
E=0+ K —
k=1 by
and A,/By, the sequence of its convergents.

Then for almost all £ and any ¢ > 0 the following identity holds as n — co:

7'1'2

1
VB, = exp( ] + o( In(3+€)/2(n)].
12n@)  \vm

ConvergentsDenominatorGrowthBound

Let £ be a regular continued fraction, B, be the convergent denominator of &,
and F, be the Fibonacci sequence. Then B, = F,,.

Convergentslrreducibility

Let
N
a
f = bo + K —
k=1 by
be a continued fraction with indeterminates a,, b, and p,./qx the sequence of its

convergents.

Then for all n € Z*, the convergents numerators

pk(@1, @, .. , an, bo, by, by, ... , by) and denominators

Ok(@1, @z, .. , an, bo, by, by, ... , by) as polynomials in the indeterminates a,, by
are irreducible polynomials.

ConvergentsMatrixRepresentations

Let 0 < ¢ <1 be a regular continued fraction

0o

and A, /B, the sequence of its convergents.
Then the following representations for the convergents holds:

(&)=[16 2 )0

k=1
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ConvergentsNumeratorAndDenominatorRelativelyPrime

Let ¢ be a generalized continued fraction, A, be the convergent numerator of ¢,
and B,, be the convergent denominator of £. Then

ng(Aﬂv Bn) = 1

ConvergentsNumeratorGrowth

Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation

< 1
E=0+ K =
k=1 b
be a continued fraction and A, /B, the sequence of its convergents.
Then for almost all £ and any ¢ > 0 the following identity holds as h — co:

2 1
VA, =V¢ exp[ i ]+o( In(3+£)/2(n)].
121n(2) Ve

ConvergentsOfCFractionsArelrredicubleRationalFunctions

The nth convergent A, (x)/B,, (X) of a corresponding type continued fraction &
of the form

f=1+ by X

b, x*2
1+ —=—
145

14een

is an irreducible rational fraction.

ConvergentsOfinverseRegularContinuedFraction
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Let & be a regular continued fraction

N1
f=bo+K—

k=1 bk

with b, € Z* and A, /B, the sequence of its convergents.
Then for all M € Z* the following identities hold:

A Mo
My K
Am-1 k=1 D1k
BM M-1 1
b+ K —
Bm-1 k=1 by_k

CorollaryForMeromorphicExtensionOfiFractionsl
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Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,
limb,=0, and

2

=1

aj—

1
+|bj|]<oo.

For notational convenience, let u;=2b; for j=0and letv;j=1-4a; for j>1.
If, for arbitrary w € C with w = w?, C, (w), D, (w) are terms which satisfy the
recursions Cy (w)=D_; (w)=0, C; (w)=Dg (w)=1-w, and

Chs1 (@) = Cp (w) =W (Cp (w) = Cp_1 (W) + Uy 0 Cpy (W) + VW Cp_3(w), forn=1,
Dn+1 (W) — Dy (w) =W (Dp, (w) — Dp_1 (w)) + Up w Dy (w) + VoW Dy_1(w), forn=0,
and if expressions C(w), D(w) are defined so that C (w) = Sg (w), D=S_1 (w)
where

Sk ((1)) = 1 + Z Z Ck,j]_ (w) leer (CL)) .“ erflvjl' (Q))

r=1k<j;<jp<--<jr<n
for
tkj @) =1 -w)(wuj(1-w™) +wyj (1 - w1
with Ckj(x1)= +(j—K)uj+ (j —k—=1)v; by definition, then the following hold:
1. For every fixed 0 <t< 1, limC, (w) = C (w) and lim D, (w) = D (w) uniformly
for |w| < t.
2. The functions C(w), D(w) are holomorphic for |w| < 1, are continuous for

lw| <1, w+=+1, and satisfy C £ 0, D £ 0 due to the fact, e.g., that
C(0)=D(0)=1.

CorollaryForMeromorphicExtensionOfiFractions2

Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— 2

a

z+bi—
z+by——=

where a,, b, eC,a,#0forn=0, 1, 2, .. , and suppose that lima, =1/4,
limb,=0, and

2

=1

aj—

1
+|bj|]<oo.

Furthermore, let w € C be an arbitrary complex number with w = w? and for
notational convenience. letui=2b: for i=z0and letvi=1-4a;: for i=1.
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1. Uniformly on compact subsets of || =1, w # 1,
Ch (@) =C(w)—W"C(@) + 0 (1),
Dy (w) =D (w) - W™ D@) + O (1)
as N - oo, where C,, (w), Dy (w) are terms which satisfy the recursions
Co(w)=D_1(w)=0,Cy(w)=Dg(w)=1-w,
Chi1 (W) = Cp (w) =W (Cp (w) = Cp_1 (W) + Up w Cp (w) + Va W Crg (w), N=1,
Dn+1 (W) = Dy (w) =W (Dp (w) = Dp-1 (w)) + Uy w Dy (w) + Vo W D1 (w), N0,
and where C (w) = Sp (w), D =S_; (w) for
Sk (w)y=1+ Z Z Ck,j, (@) Cj, j, (@) - Cj,_, j, (W),
r=1k<jy<jo<---<jr<n
tkj @) =1 -w) " (wuj(1-w™) +wvj (1 - w1,
with ¢ j (+1) = +(j — K) uj + (J — k= 1) v by definition.
2. If in addition to the hypotheses in (1.) 2, j(|a; — 1/4| + |bj|) < co, then C and

D are continuous for |w| < 1 and the asymptotic estimates for C,, D, in (1.) hold
uniformly for all |w| = 1.

3.Foralljw|=1, w+=+1,

=

Il
=

a)_lC(cu_l) D(w)-wC(w) D(a)_l) =(w_1 —w) (1—Vj).
j

4. For fixed |w| =1, w# £+ 1, lim_,, C,, (w), respectively lim,_, D, (w), exists and

equals C (w) # 0, respectively D (w) # 0, if and only if C(w) = 0, respectively

D(w) = 0. Moreover, at least one of the sequences C,(w), Dn(w) diverges to co.

5. If all a,, by, the continued fraction expansion of f(z) is real, then

C (w) =C(w) + 0 and D (w) = D(w) # 0 both hold for all |w| =1, w # + 1. In this

case, both sequences C,(w), Dn(w) diverge in this region as n - co.

6. If in addition to the hypotheses in (1.) 32, j(|a; — 1/4| + |bj|) < o holds, then

1 Ch(w)
lim —[Ilm }:C(il)
n-eo N [w-%1 (1 — w)

1 Dp(w)
lim —[ lim }: D(x1).
n-oo N |w-%1 (1 — a))

CorollaryForMeromorphicExtensionOfiFractions3
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Let f(z) be a J-fraction of the form

1
f(2)=

Z+b0— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,

limb,=0, and

& aj -1 .
Z( +|bj|] Rl <
=1

for some R > 1. Furthermore, let w € C be an arbitrary complex number with
w = w? and for notational convenience, let uj=2b;jfor j=0 and let

vi=1-4a;for j=1. Let C, D be functions defined such that C (w) = Sq (w),
D=S_1 (w) for
Sc@=1+) > Gy @, @)y @),

r=1k<ji<jp<--<jr<n
Ok j (@=L -W " (wuj (1 -w™) +wvj (1 -wiT)),
with ¢, (1) = £(j - K) uj + (j — k = 1) v by definition. Then both C and D are
holomorphic for |w| < RY2, both are continuous for |w| < RY?, and together they

satisfy the identity

wC(w DWW -wCWD(w?)=(wt-w] [1-v

=,

[
=

]

for R™Y? < |w | < RY2,

CorollaryForMeromorphicExtensionOfiFractions4
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Let f(z) be a J-fraction of the form

1
f(2)=

Z+b0— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,
lim b, = 0 hold. Furthermore, let w € C be an arbitrary complex number with
w = w? and for notational convenience, let u;=2b; for j=0 and let

vj=1-4a; for j= 1. Moreover, suppose the functions C(w), D(w) are defined to
be C (w) = So (w), D =S_; () for
Sc@) =1+ > 0 @)y, @) €y (@),
r=lk<js<jp<--<jr<n

tkj @) =1 -w) ™ (wuj(1-w™) +wvj (1 -wi*1)),
with ¢, j (1) = £(j — K) uj + (j — k = 1) v; by definition. Finally, define the
functions A*, A™, B*, B~ as follows: A*(x)=2¢7""C(e™"?), A~ (x) =2¢'" C(e'?),
B*(x) = D(e~*?), and B~(x) = D(¢’*). Given this framework, —1 < x < 1 implies
that
27 ()=~ (x) -7 (%)
and that
i P(Cos(d)) = e’ C(ei ‘9)/ D(@w) —e C(e_i ‘9)/ D(e_w),
where
0= (1= |x-v)/B* 0B 0

T

=1

for x e [-1, 1] with all roots nonnegative, where x = cos(®), ¢ € [0, 7] implies
2 o ‘ '

p(cos(d)) = — sin(&) H(l ~v;)/D(e’?) D(e )
/e =1

and where f*(x) satisfy f*(x) = A* (x)/B*(x) for -1 <x < 1.

CReducedlrrationalNumber

In irrational number @ € R\Q with conjugate «’ is C-reduced if & > 0 and
a’ <-1.

CRegularFractionsConvergeTolrrationals

Any C-regular continued fraction & converges to some o € R\Q.
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Criterion:ContinuedFractionTranscendencel
Let £ be a positive irrational number 0 < ¢ < 1 with continued fraction expansion
< 1
¢=K—
j=1 b;
with aj e Z* and convergents A, /B, (with q_; = 0). If the sequence {b,};_;
1. is not eventually periodic
2. there exists a sequence of finite word {V,}22, such that V¥ is a prefix of
{bn}nes
3. the sequence {|V,|}a2, is increasing
and either there exists a rational w = 2, or there exists a rational w > 1 and the
sequence {B%/”}:’zl is bounded, then ¢ is transcendental.

Here, |V,| denotes the length of a word and V)’ is the word formed by |w]
copies of V,, concatenated with the first [(w — [w]) [w|] elements of V,,.

Criterion:ContinuedFractionTranscendence2

Let £ be a positive irrational number 0 < ¢ < 1 with continued fraction expansion
R

=1 b;
with aj e Z* and convergents A, /B, (with q_; =0). If the sequence {Bp};_, is
bounded define
m = lim inf B}/"

N—oo

M = lim sup B}"

N—-o00
and let two rational numbers w > 1 and v be chosen so that
In(M)

w>(2v+1) V.

In(m)
If there exist two sequences {Un}>; and {V}32, such that
1. for any n= 1 the U, V' is a prefix of {b,}3>;
2. the sequence {|Uy|/IVnl}x.; is bounded from above by v
3. the sequence {|V,|}a2, is increasing
then ¢ is transcendental.

Here, |V,| denotes the length of a word and V) is the word formed by |w]
copies of V,, concatenated with the first [(w — [w]) [w|] elements of V,,.



CriterionForCConvergents

Let @ e R\Q be an irrational. Any ratio A/B e Q satisfying

Al 1
a-—|<—, jef{0, 1
Bl ¢;q?

where ¢g = 3/2 and ¢, =2 is a C-convergent of a.

CriterionForCDualConvergents

Let « e R\Q be an irrational. Any ratio A/B € Q satisfying
A

o — —
B

1
50 1€i0, 1
Ci q

<

where ¢y =2 and c¢; = 3/2 is a C-dual convergent of a.

CriterionForConvergenceOfGrommerFractionsl

If it is possible to find a single bounded, nondecreasing function £(t) such that

jﬂ%ﬂg(t):nS

fors=0, 1, .. , where ¢ (—c0) = 0 by definition, then the associated continued
fraction ¢ of the form

£= o

Z—ag—

for a given formal power series o (z) = Y oCn z7"1 is a Grommer fraction
which converges to the value

de)
—o Z—1 ,

Im(z) > 0, of by the Stieltjes transform.

CriterionForConvergenceOfGrommerFractions?2
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Given a function fy which behaves asymptotically as the formal power series
P@ =22 0Cn 27" in the sector e <arg(z) <7 —¢, 0 <e<x/2, where ¢, R for
all n, where fy(2) is analytic for all Im(z) > 0, and where Im(fy(z)) < 0 when
Im(z) > 0, then the Grommer fraction & associated to fy, P, converges whenever

Con I/n
lim inf( ) < 0.
n-co \(2N)!

CriterionForExistenceOfGrommerFractionsForCertainPow
erSeriesl

The associated continued fraction ¢ of the form

£= 0

Z—Qo—

for a given formal power series o (z) = > _oCn 27" is a Grommer fraction if
H.,>0forallk=0, 1, 2, .. , where Hy, denotes the kth Hankel determinant of
fo.

CriterionForExistenceOfGrommerFractionsForCertainPow
erSeries2

The associated continued fraction & of the form

£= 0

Z—qp—

for a given formal power series o (z) = > _oCn z"1 is a Grommer fraction if it

is possible to find a bounded, nondecreasing function £(t) such that, for
S= O! 11 L ]

ft%g(t):cs

where { (—oo0) = 0 by definition.

CriterionForPowerSeriesToHaveSFractionExpansions



A power series of the form

has an S-fraction expansion if and only if the determinants A, and Q, are
nonzero for all p=0, 1, 2, ... where for each p,

Co Cq Cp
A= €k C - Cpua
p—| . . .

Cp Cps1 -+ C2p
and

Ct C - Cpn
0,=| T e

Cp+1 Cpy2 - C2ps1

Criterion:SeidelSternCriterion

Let
N1
§=bo+K—
k=1 by

be a positive continued fraction (meaning b, = 0 for all n). Then the continued
fraction & converges if and only if

m
> by =co.
n=1

Criterion:TietzeCriterion
The continued fraction
> 3
f = bo + K —k
k=1 by
with a, € Z, aj# 0 for all j and b, € Z* converges if there exists a positive
integer N such that for all k= N
by = |ay]
b, = |a| + 1fora., <O.

Furthermore, if the continued fraction converges, the limit ¢ is irrational.
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DajaniKraaikampTwoDimensionalGaussKuzminTheorem

Let T be a Gauss map, U : R? - R? be given by

m
1]+y)

A be the Lebesgue measure on R?, J(x, y) = (0, X) x (0, y), mn(X, y) be given by
my(x, ) = A((UN) " Ax, v))),

Ux, y)= {T(X),

and
g=9¢".
Then
In(1+xYy)
my(X, y) = +0(g").
N(X, Y) 2 (gV)

DarmonMckayContinuedFractionForOneOverEMinusl
Let ¢ be a regular continued fraction where

e=K "

k=1 N
Then

DavisonFractions

Let 0 be a positive irrational number 0 <¢é <1 and letkeZ* and k= 2. Then
the continued fractions

o0 1
=K ——
=1 1+ ((j6) mod k)

are transcendental.

DavisonShallitSelfSimilarContinuedFractionsAreTranscende
ntal
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Let w, be a sequence of natural numbers defining

&= nI=<1 g

a regular continued fraction, with convergents A, /By, that satisfy
bp=0

b1 =wp

¥YNn=0, by, =By Wyt

Then ¢ is a transcendental number.

DawsonConvergenceCriterionl
Let £ be a regular continued fraction

< 1
¢=K —

k=1 by
with convergents g, and suppose that g, .1 converges absolutely and that g,
converges, then g, converges if and only if

o0 p
D ibzi-al =0 \/ limsup »’ byl = co.
i=1

i=1

DawsonConvergenceCriterionll
Let ¢ be a regular continued fraction

< a
(=K =

k=1 by
with convergents f, = A,/By. If o, converges and 9k >0, Vi, Bj # 0 and
liminf(lan|) < oo, then there exists v and a subsequence g, such that

lim foqma=vAIlImf,=v.

DawsonConvergenceCriterionlll
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Let ¢ be a generalized continued fraction

k=1 1
and ry is a sequence of nonegative reals such that ry |a; + 1| > |a4],
rjag+a+1|=lag, foralln=3, rylan_1 +an + 1| = r_s ry [an-1] + lan] and

n
liminf ]_[ri =0,
n
i=1

andforalln=1, ro<1

i(l - ri) = 00.
i=1

Then & converges in the wider sense.

DawsonConvergenceCriterionlV

Let £ be a generalized continued fraction

k=1 1
Then if for all n =1, |a, + any1 + 1| = 2 max(lan|, 1ans1]), € converges.

DegertConditionPeriods

Let d be a squarefree integer,
d=r+X?

and

-

be quadratic irrational numbers, ¢ be the regular continued fraction of x, and |
be the regular continued fraction period of ¢. Given (4 X) mod r =0 and
2-2X=r=<2X,thenl<12.

DensenessOfErrorSumFunctionsOfContinuedFractions

Let @y, be an irrational number where 0 < a, < 1, &, be the regular continued
fraction of «,, E(@y) be the absolute error sum of &,, & (ap) be the error sum of
&, S=10, ¢],and T =[0, 1]. Then given that «a, is dense, it follows that &(ay)
and &*(ay) are dense in [0, ¢] and [0, 1], respectively.
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DiscrepancyOfARealSequence

LetEc[0, 1, w= {xn},'}'=1 a sequence of real numbers and define A(E; N; w) so
that

A(E;N;w)=H{n : 1=<n=<Nandfrac(x,) € E},

where & A denotes the number of elements of A for all sets A and frac(y)
denotes the fractional part of the element y for all y.

The the discrepancy Dy associated with the finite segments of w is defined to be
Ala, B); N; w)

Dy (w)= sup -(B-®

O=<a<p=1

DistributionalLimitForContinuedFractionsWithMinimalRema
inder
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Let x be a rational number where 0 < x <1,

be a half-regular continued fraction of x, define

S(x) = i ap,
n=1

let M,, be rational numbers 0 < x <1 where S(X)<n + 1,
card{£:£e M, A€ <t}
card{¢£:&e My}
F(t) = lim F(t)

N—oo

I:n =

Ei) =] [(-a))

j=1
i
A = Zb,—
j=1

1
=§(1+\3/19—3v33 +\3/19+3\/33 )

and
1
C=——.
A-1
Then
= E(i)
F(X)=bg—-cA  —.

DistributionalLimitForContinuedFractionsWithOddPartialQ
uotients
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Let x be a rational number where 0 < x <1,

be the continued fraction with odd partial quotients continued fraction of X,

S(x) = i ap,
n=1

M,, be rational numbers 0 < x <1 where S(X)<n +1,
card{£:£e M, A€ <t}
card{¢£:&e My}
F(t) = lim F(t)

N—oo

I:n =

Ei) =] [(-a))

=1
i
A=) bj-1
j=1

1
=§(1+\3/19—3v33 +\3/19+3\/33 )

Then

> E(i)

Fx)=1- .
o AN

DistributionForMaximumPartialQuotient
Let a be an irrational number where 0 <a <1,
< 1
&= nI:<1 E
be its regular continued fraction,

Ly = max by,
n=N

y be a positive real, S(N, y) be irrational numbers @ where 0 <@ <1 and
Ln/N < y/In(2), and p be the Gauss measure. Then

,!‘im u(S(N, y) =e .

DistributionOfRationalsWRT LargestPartialDenominator



132

Results.nb

Let 0 < p/g <1 be a rational number and gcd(p, q) = 1. Let D(p/q) be the
maximal partial denominator that occurs in the regular continued fraction
expansion of p/q

p
D(—] = Nma\x ({by, by, ..., bn D),
q E:K i/\b,\pl

k=1

and let ®(x, «) be the number of fractions with maximal denominator x such
that their largest partial denominator is less than In(a) x

p
q:0= p<qsx/\gcd(p, q):l/\D(§)<aln(x) .

Then for @ > 4/In (In (X))

3 , -2 1 24 In(In(x))
dX, )= —X"e MQ[1+O(—+1)@M2 )
G a? In(x)

d(X, @) =card

holds uniformly.

DistributionOfTheLargestPartialDenominator

Let 0 < p/qg <1 be a rational number and gcd(p, q) = 1. Let D(p/q) be the

maximal partial denominator that occurs in the regular continued fraction
expansion of p/q

D(E] = max {bq, by, .. , by}

N
VoK 2 Aben

L

a4 k=1
and let ®(x, @, M) be the number of fractions with maximal denominator x such
that exactly M of their partial denominator are greater than « In(x)

(X, a, M):card[p/[q:Osp<qsx/\

ged(p, q) = 1/\card b N =M|{|.
j:bj>aln(x)/\§=5 é/\b,pl

Then asymptotically for large x

3 1 (12 \M
O(x, @, M) = — x* e~ 12/lar?) (—) .
bg M! \@ 72

DomainOfConvergenceAssociatedToRogersRamanujanCon
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tinuedFraction

Let 7 be an irrational number, define the modular nome by
q :eZn’er

let £(q) be the Rogers Ramanujan continued fraction of g,

) qk2 Zk
Gdz%=§§ :
k=0 (q1 q)m
be a holomorphic function, Ry be the holomorphic radius of Gy(2),
Gq(2)
Hq(2) =
Gy(q2)

be a meromorphic function, Vq be the poles of Hy(2) in D, a complex disk with
radius Ry, Q4 be circles containing the poles in Vj,

U=D-Q

be a complex domain, and X be any closed set where X c Qq, X # Q.

Then &(q) converges uniformly to Hy(z) on compact sets in U and for all X it is
not true that £(gq) converges uniformly on compact sets D — X.

DomainOfConvergenceForRogersRamanujanContinuedFrac
tion

Let 7 be an irrational number, define the modular nome by
q= eZn’nT
£(g) be the Rogers Ramanujan continued fraction of g,

) k2

Gy =) .

k=0 (qy q)m
be a holomorphic function,
Gy4(2)

Gq(a2)
be a meromorphic function, V, be the poles from Hq(z) in D, the unit disk,

Zk

Hq(Z) =

be complex circles containing the points in Vj,
U=D-Qq
be a complex domain, and X be any closed set where X c Qq, X # (.

Then £ () converges uniformly to Hy(z) on compact sets in U and
(Y itis not true that £(g) converges uniformly on compactsetsin D — X) .
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DuallyRegularChain

A dually regular chain is an infinite product To Ty --- T, --- where Tp = Vi"’,
bpez, T, +V4, and

Tne{V;, C} fordet (To Ty Thoy)=+1
Tne{V;, Ej, C} fordet(ToTy -+ Tn_y) =i

H

forn=1suchthatnonyeZ", je{l, 2, 3} exist for which T, = V; for all n = nq.
The matrices used here are defined as follows:

1 10 1-i
Vl_(o 1)’ VZ:(—lz 1)’ V3=( —i :z+1)

E1=( 1 0) E2=(1 i—l) E3=(i 0)

1-i i) 0o i ) 01
1 -1

Cz(l—i i )

EigenvaluesOfGaussKuzminWirsingOperator

Let £ be the Gauss Kuzmin Wirsing operator and A,, be its eigenvalues. Then
[A14nl < 1Anl, Ay has simple eigenvalues, (-1)*" A, > 0, and
An 1

Iim—=£(—3—\/§).

n—oco A1+n

EquivalenceTransformation



Two continued fractions ¢ and &’ of the forms

<
§=b0+K -
m=1 b,
and
'=ppy+ K =
& 0+m=1b§n

are said to be equivalent if there exists a sequence of complex numbers r = {r,}
with ro =1, ry, # 0 for m = 1, so that by = bg, a;, = rm rm-1 am, and b}, = ry, by,

form=1, 2, 3, .. . Here, the sequence r is said to be an equivalence transforma’

tion between ¢ and &'.

Perhaps the most commonly-used equivalence transformations results when ry,
has the form

Lm/2]
n 3 kl__ll Ak
= nat(_l) = —]
L Lm+D2]
=1 [T axka
k=1

which transforms & into its regular continued fraction form &q4. Here, &eq is a
regular continued fraction of the form

where d; =b;/a;,and form=1, 2, 3, .. ,
apag - aam-1
d2m=b2m )
dxas - az2m
azag - azm

d2 m+1 = I32 m+1
d;as---dam-1-
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EquivalenceTransformationNumeratorDenominatorCancell

ation
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Let

@k

N Bx
§=bo+K—
k=1 Yk

Ok

be a continued fraction with convergents A, /By. Then the continued fraction

N % fork=1
171
T]=b0+K
k=1 | WOBeirier gorpsq
B vk

with convergents P,/ Qy is equivalent to the continued fraction &, meaning

n=¢
PkZAk
Qk = By.

EquivalenceTransformationWithUnitDenominator

Let
N a
§=bo+K—k
k=1 by

with by, # 0 for k = 1 be a continued fraction with convergents A, /B,. Then the
continued fraction

a _
{ o, fork=1

& fork>1

N L bbb
n= bo + K i
k=1 1
with convergents P, /Qy is equivalent to the continued fraction &, meaning
n=¢
P = Ay
Qk = Bx.

EquivalenceTransformationWithUnitNumerator
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Let
N
a
f=bo+K—k
k=1 bk

with a, # 0 for k= 1 be a continued fraction with convergents A,/By. Then the
continued fraction

N
n= bo + K
k=1 (%2
[Tazj-1
=1
k2
[Taz;

j=1

xb,  forkeven

k-1y2
azj
j=1
wns— Xb forkodd
[T azj-1
j=1

with convergents P, /Q, is equivalent to the continued fraction £, meaning

n=¢&
P = A
Qk = By

EquivalentSternStolzSeriesDivergenceCriteria

Let
N a
§=bo+K—k
k=1 by

be a continued fraction. The Stern-Stolz series of ¢ diverges if one of the follow’
ing three criteria holds:

; m bobe | |
1. limpse [Zn=2 ”a—n“ ]_oo
: m bhab) | | _
2. IImm_m [21:2 nn—an ]— o)
. . an
3. limpse inf ( ) < 0.
2<n<m\ bn-1bn

EstimatesForHausdorffDimensionForConstrainedPartial Quo
tients
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Let E be a subset of the natural numbers, E(R) be the regular continued frac™.
tions ¢ whose partial denominators lie in E, E(G) be the backwards continued
fractions & whose partial denominators lie in E, and H be the Hausdorff dimen’
sion. Then given

it follows that H(E(R)) = 1/2 and H(E(G))=1/2.

EstimatingIntegralsUsingAlgebraiclrrationals

For an arbitrary function f of bounded variation, denote by | the integral
| = Llf(x)dx. If a is any algebraic irrational in (0, 1) whose continued fraction
£=10;by, by, .. ], then Iy — 1 = O (N~?"9) where e > 0 and where

1 N
In=— f(k ).
N= k;

EstimatingIntegralsUsingQuadraticlrrationalContinuedFracti
ons

For an arbitrary function f of bounded variation, denote by | the integral
= Llf(x)dx. If @ is an irrational in (0, 1) whose continued fraction

& =10; by, by, .. ] has bounded partial denominators, then Iy — 1 = O (In (N)/N)
where

1 N
Iy= — Zf(ka).
N k=1

Moreover, if f is a characteristic function of some subinterval J of (0, 1), then

In(N)
[In =11 =36-sup {b}- ——.
K N

EstimatingIntegralsUsingSlowlyConvergingContinuedFractio
ns



For an arbitrary function f of bounded variation, denote by | the integral
= Llf(x)dx. If @ is an irrational in (0, 1) whose continued fraction

& =10; by, by, .. ] has rational approximants of the form A, /B, where Bo=1
and where Bj,, =Dbj,1 Bj+bj_q for j=1, 2, .., and if each partial denominator

B; of £ satisfies the relation Bj,, = O (B]) for fixed y > 1, then Iy — 1 = O (N~*7)

where

1 N
INn=— f(ka).
N= sz
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EstimationOfApproximantsForLimitPeriodicContinuedFracti

ons

Let £ =K(b,/1) =[0; by, by, .. ] be a limit periodic continued fraction which

satisfies foralln=1, 2, .. d, =< , where d, = maXmsn |am — (=1/4)|. In

1t
4(4n%-1)
particular, if S,, (0) = A, /By is the nth approximant of ¢ and if the approximant

An+An- . . .
o5 for all complex w, the following estimates are valid:

function S, (w) = B W
n n-1

_ _p2
M(1+/—))+2ﬁ+1) fordnsﬁ, O0<B=1l,nz=1

1 1+8 n 2n2
&- Sn(_E) 4d(n+1) (n+2)
< fordy< ——, a>1,d>0
é_ _ S (O) (n+1)d+1_2 d nu+1
n

4 (n+1) I (241)

<N
o (121 ford, <r",0<r<1.

For the second case, the estimate holds for (n —1)* (¢ — 1) > 2d n and for the
third, the estimate holds whenever (1 —r)?2 > 18 r"*1.

EulerMindingFormulas
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Let

ax
f bo + K —

k=1 by
be a continued fraction and A, /B, the sequence of its convergents.
Then the following explicit forms for the numerators and denominators of the
convergents hold:

An=(i]i]bi] i{zl 'Z i Z;ﬁ A, +me1

|m+m b|m+m+1

n n-1(p-11i,-1 ib-1i-1 u A et
an[l—[bi]x 1+ [ Z ]_[b i

i=1 iz=1 ip=1 m=0 Vim+m Biem+1

EulerQuadraticlrrationalTheorem

Let
f bo + K —

k=1 by
be a continued fraction with b, € Z* and b, > 0 for n> 0 and by, j = b, for all
n=ng =0 for some j=0. Then £ is a quadratic irrational, meaning ¢ is the
solution of a quadratic equation with rational coefficients.

EulersFirstContinuantldentity

Let £ be a regular continued fraction and K(i, j) its classical continuant. Then
foralli<m<n<j,

K(, j) K(m, n) — K(@i, n) K(m, j)= (-1 K@i, m-2) K(j+2,n).

EulerWallisRecursion
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Let

N a,
f=bo+K—
k=1 b,

be a continued fraction and A /B, the sequence of its convergents. Then the
following recursion relations hold:

Ay =ay Axo + b A g
By =ax B2+ bx By s
with the initial condition A_; =1, Ag=bg, B_.1 =0, By =1.

EvenContraction

Let £ = by + K(am/bm) be a generalized continued fraction with nth approxi*.
mant &, = A,/B,. A continued fraction ¢ = dg + K(cn,/dy) with nth approximant
{n =C, /D, is said to be an even contraction of ¢ if and only if £, = &, for
n=0, 1, 2, .. . Note that ¢ has an even contraction if and only if b, , = 0 for all
positive integers n.

EveryNumberinUnitintervallsSumOfKRealNumbersWhoseC
ontinuedFractionsHavePartialQuotientsLessThanOrEqualTo
K

Define F, = {a € (0, 1/k) such that its partial quotients are less than or equal to k}
then
kF,=1[0, 1].

EveryQuadraticlrrationalHasPeriodicCDuallyRegularFractio
nExpansion

Every irrational number & € R\Q which is quadratic over Q has a periodic C-
dually regular continued fraction expansion.

EveryQuadraticlrrationalHasPeriodicCRegularFractionExpan
sion
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Every irrational number « € R\Q which is quadratic over Q has a periodic C-
regular continued fraction expansion.

EveryRealNumberlsProductOfTwoF4RegularContinuedFrac
tions

Every real number x = 1 can be represented as a product of two regular contin’
ued fractions x =¢&1 &

o>l
§j=0+K—

k=1 bk

withO<by <4 forallkandi=1, 2.

EveryRealNumberlsSumOfTwoF4RegularContinuedFraction

S

Let T be the interval [V'2 -1, 4V2 - 4]. Then every real number x € T can be
represented as a sum of two regular continued fractions x =&, + &,

<1
§j=0+K—

k=1 by

withO<by <4 forallkandi=1, 2.

ExactGaussKuzminLevyTheorem

Let 7 be the Gauss map

T:R->Z

1 1
T(X)=—~ {—J

X Lx
Let u be the Lebesgue measure. Then

Inl+z) &
.k k
X:T(X)<Z)= + AS @y (2).

'u( ) In(2) mzz‘; "o

Here A, are the eigenvalues of the Gauss-Kuzmin-Wirsing operator £ and ®;,(z)
the eigenfunctions of L. The eigenfunctions fulfill
Op(0) =Pp(1)=0

sup |z +1)P,(2)] < oo.
Re(2)=-1/2
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ExistenceForArbitraryRadiusOfConvergenceForGSeriesAss
ociatedToRogersRamanujanContinuedFraction

Let x be a real number where 0 < x <1, 7 be an irrational number, define the
modular nome by
2inT

g=e )

let £(q) be the Rogers Ramanujan continued fraction of g,

Gq(z) = i

k=0 (q1 q)m
be a holomorphic function, and Ry be the holomorphic radius set of Gy4(z). Then

2
qk Zk

VXHT Rq:X.

ExistenceOfConstantCoefficientVectorFieldsThatAreNotGl
oballyAnalyticHypoelliptic

Let a be an irrational whose continued fraction a, has convergent denomina
tors By, satisfying

ans1 > e B"/Bn

where K >0. Then

V=d/dx—-ad/dy

is neither globally analytic hypoelliptic nor globally hypoelliptic.

ExistenceOfRichardsGoldbergFractionsForPositiveRealFunct
lons
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If f, is a positive real function for which neither a, f, (z) - z f, (a;) nor
ar f; (ay) — z f; (2) vanish for arbitrary positive constants a, € R, then the func
tion f.,; defined by the recursive relation

arfr@-zf @)

fri1 ()=
@ arfr@@an -zt

is positive real and has an associated continued fraction &, of the form

do 91—22
b=~ —————
z _ &z
d]_Z PR

for some complex constants dq, do, .. , €1, €2, .. . The continued fraction &, is
called the Richards-Goldberg continued fraction associated with f,, .

ExistenceTheoremForEntireFunctionWhoseDiagonalPadeA
pproximantsConvergeNowhere

Let f be an entire function and f,(z) be the Padé approximants diagonals at O.
Then
s V0 lim sup| i (2)| = co.

N—oo0

ExistenceTheoremForSingularitiesOutsideConvergenceDisk
ForPadeApproximantRows
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Let f be a meromorphic function, D(m) be the largest complex disk where f has
less than or equal to m poles.

Let Tr,n be the m th row Padé approximants, Ry, be the radius of D(m), a be an
element of C\0, u be a positive integer where 2 < u <m, U(a) be the poles
converging from Tp, , at &, a; be elements of C\0 where 0 < |as| and [a;| <|aj1],
Y usjsm |aJ| =R,

and Qy n, be the Padé approximant denominators. Then given

Ins0 Von Qun = [ 2= £, )

j=1
Y1<j=m r'j_)”;f(j, n)=aj,

it follows that

Y_14u<jzm Rm =R

Vi ={a(l), .. , a(-1 + w)} are the poles of fin D(m)

V¥ ,.<j<m a; are singular points for f.

ExpressionForinvariantProbabilityOfBernoulliRandomContin
uedFractionWithParameterAlpha

Let Z, be an independent identically distributed Bernoulli random variable, P
its probability expectation, X,, a Markov chain defined by

Xn=1/Xn_1+ Zy

P(Z,=0)=«a

PZ,=1)=1-a.

Then X, converges to a singular probability 7 supported on the positive reals

which has the distribution function F(x), that can be described by writing x as a
continued fraction

< 1
¢=K —
k=1 b
and then
i+1
00 : 2.4
S () forx=1
F(X)Z IE(:)( ar) (a+l)
F(5)
1-—= for x> 1.

a

Fareyinterval



146 Results.nb

Given a Farey pair a/b <c/d, the interval [a/b, c/d] is called a Farey interval.

FareyPair

A pair of nonnegative rational numbers a/b <c/d is called a Farey pair if
bc—-ad=1,ie.,ifc/d-—a/b=1/(bd).

FarinhaConvergenceCriterion

Let ¢ be a generalized continued fraction

k=1 1

where the a, are functions in a region D satisfying

lim a,(z)=0 /\ an(2)+0

N—oo

and |a;| =a Alag + 1] = |ay| + u for some @ and u foralln= 1,
lan + ans1 + 1| = 2 max(|anl, lan+1l). Then & converges and
I£2)] <min(3/2, (a@+pw)/pu™2).

FastContinuedFractionAlgorithmGivesUltraCloseApproxim
ationsTolrrationals

For any irrational number « in (0, 1), the fast continued fraction algorithm
gives precisely the set of all ultra-close approximations to a.

FastKhinchinSpectrumOfContinuedFractions
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Let @ be an irrational number where 0 <a <1,
_K=
¢ n=1 b,
be its regular continued fraction, ¥, be a sequence where
Y
lim— = oo,
n-co n
E(y) be irrational numbers @ where
n
2 In(b;)
j=1
O<ax<l /\ lim
N—-oo wn
. Yy(n+1)
c=Ilimsup
N—-oco lﬂ(n)
and H be the Hausdorff dimension. Then given i, is monotonic increasing it
follows that

=1,

1
HEW) = —.
1

+C

FickenContinuedFractionCypher

Using the correspondence A —» 2, B - 3, .. , any text message can be encoded
in the convergents of a regular continued fraction

with the association b, — letter.

FiniteAutomatonBoundForGeneratingContinuedFractionsOf
Algebraics

Let @ be an algebraic number where 0 < @ < 1, d be the algebraic degree set of «,

< ]
¢=K —

n=1 b,
be the regular continued fraction of @, and b, be the partial denominator of £.
Then given d = 3, it is not the case that b, is an automatic sequence.

FoldingLemma
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Let & be the regular continued fraction expansion

M1
E=ap+ K=
=1 b;
and convergents A,/B,. Then the folowing identity holds forallne Z*, n< M,
x € C\0:
A 1" n 1
5 =by+ K - =
Bn xB2 =1 ( bj forl<j<n
X— % forj=n+1
2n+l 1
b0+ K
=1 (b forl<j=n
X forj=n+1

—bonio-j forl<j<2n+1.

FractionalPartsOflrrationalsUniformlyDistributedModOne

For 6 e R\Q, frac(n 6) is uniformly distributed modulo one forn=1, 2, ... ,
where frac(y) denotes the fractional part of y.

FunctionOfGaussMapAverageForAlmostAlINumbers

Let £ be an irrational number from the interval (0, 1) and let T be the Gauss map
7. R->Z
1 1
T(X)=— - {—J
X Lx
Then for any measuerable function f, and for almost all £, the following iden’

tity holds:

I 1 1 f(X)
lim— » f(*¢)=— dx.
noeon = In2) Jo x+1

FundamentalFormulas
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Let
N
a
f = bo + K —
k=1 by
be a continued fraction and A, /B, the sequence of its convergents. Further, let
A,., be the numerator of the convergents of the continued fraction

A+v
ay
bA + K —
k=A+1 by
with initial conditions Ag, = A,, Ay -1 =1, Ao =Db, and let B, , be the numera
tor of the convergents of the continued fraction
A+v ak
b/l+1 + _
k=A+2 by
with initial conditions By, =B,, By _1 =0, By 1 =by,;1.
Then the following recursion relations hold:
Orv-1 =231 Br2 Bry-1 + Bacs Apya
Avpy-1=ay A2 Bryor + Acs Ayt

GaloisPeriodicRegularContinuedFraction

Let ¢ > 1 be a quadratic irrational, meaning a nonrational solution of a
quadratic equation with rational coefficients of the form

¢ P+vD
Q
with P, Q, DeZ with P=0, D>0, and Q >0, and Q1 (D - P?). If its conjugate
P-vVD
]] =
Q
satisfies —1 <7 <0, then & has a purely periodic regular continued fraction
expansion
< 1
é: = bo + K —
k=1 by

with by, ; = b, for alln=0.

GaussKuzminTheoremForOptimalContinuedFractions
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Let K be a simply connected set, B be its boundary, g; and y; be real numbers

where —g? < 8i < i, ki and 7; be real numbers where 0 <k <7i<1/2, f; be a
continuous function that is monotonic on [g;, vil.
Also let |; be a parametrized curve

li = {{n, fim} |18| =sp=v}VEi={B.n | Ki <1 < T},

where

B=UIi.

Finally, let D,(K) be real numbers where —% <X /\ X< % /\ 3, T ¢ K, A be

ocf

the Lebesgue measure, u be the optimal continued fraction measure,

{%J + v sgn(t) 1

foct(t, V) = 5 (HJ . vsgn(t)) " + m

It

be a function,

Toct(t, V) = {Itl = foct(t, V), : }
focr(t, V) + vsgn(t)

and

g=9¢7".

Then

A(Dn(K)) = u(K) +O(g".

GaussKuzminWirsingConstant

Let G(x) denote the Gauss map which is defined piecewise to be

s X forx=0
)= x—|x] forx=0.

From this, one can define the Gauss-Kuzmin operator (sometimes called the
Gauss-Kuzmin-Wirsing operator) h to be the transfer operator of the Gauss map
G having the form

1 1
h(x):——{—J
x Lx

or, alternatively, the form in which it acts on functions f, namely

© q 1
[Gﬂoo=§] f( }

= (x+n? \x+n

Though analytic forms of its eigenfunctions are unknown past the zeroth such
function, numerical methods can be used to compute the eigenvalues of the
Gauss-Kuzmin operator. The first eigenvalue A, is, to fifty decimal places, equal
to

A1 = -.30366300289873265859744812190155623311087735225365 ... ,
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and the constant A defined to be the absolute value A = |A4] of this first eigen’
value is, by definition, the Gauss-Kuzmin-Wirsing constant and is intimately
connected to the study of continued fractions.

The discovery of this constant was a result of an early problem of Gauss who, at
the time, was interested in the probability distribution of coefficients in the
continued fraction expansion of a random variable uniformly distributed in

(0, 1). To that end, given an arbitrary number x uniformly distributed in (0, 1)
with regular continued fraction expansion & (x) = [0; by, by, .. , by, ... ], Gauss
was able to find for all b e Z* a closed-form asymptotic equivalence for the
value Pr{b, =b} as n - oo, namely

1
limPr {b, = b} = -log, (1— ]
n-co (b + 1)2

Moreover, it was proved that if r, =r, (X) = [by; bns1, bpio, .. ] and if
Zn (X) =, — b, =[0; bny1, bnio, .. 1, then the (Lebesgue) measure my (@) of the
collection of all numbers x € (0, 1) for which z, (x) < a satisfies the asymptotic

result

) In(1+a)
limmg, (@) = ——
n—-co |n(2)

a € [0, 1]. The goal then shifted to finding an expression for the value of the
expression my, (x) — In(1 + x)/In(2) for large values n, and no solution belonging
to Gauss was ever published.

Later, Kuzmin published the first solution to this problem. He proved that by
setting

In(1 + x)
my (X) =——+nIy (X)-

In(2)
the value of r,(x) satisfied the asymptotic result r, (x) =0 (q‘m) for a constant

g€ (0, 1) independent of n, x. Later, Lé vy was able to bound ry(x) asymptoti*.

cally by 0.7" and even later, Szilisz was able to improve the bound to 0.485". In
the mid 1970s, Wirsing gave the exact asymptotic bounds for m, to be

In(1 +x)
My ()= ————+ (D)"Y () +0(x(L-x)u"
In(2)
for a specifically defined function ¥ and a unique constant u while simultane

ously computing the value A accurately to ten decimal places.

Much work has been done to advance the computational accuracy and theoreti’
cal understanding of the constant A since Wirsing 3 work was published. For
example, mathematicians Babenko and Flajolet & Vallé e independently discov™.
ered a discretization over [0, 1] of the action of the Gauss map on certain
Taylor expansions centered at x = 1/2, the result of which is a discrete matrix
M with entries of the form

D' & . .
M= - _ Z( )(—2)” (N+2)i [¢n+i+2)(2M12 - 1) - 212,

it(=2)) ;g\n
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where (x); = '(x + i)/T" (x) is a so-called Pochhammer symbol and where £(z)
denotes Riemann 3 zeta function, whose second-largest (in absolute value)
eigenvalue A; is precisely the value A above. These and other methods can be
found in the work of Briggs, as well as in the literature published by Finch,
MacLeod, and Plouffe. It is unknown whether A is irrational or transcendental.

GaussKuzminWirsingOperator

Let ¥V be the Banach space of functions analytic in the disk {z: |z - 1| <3/2} and
continuous in its closure, equipped with the supremum norm. The Gauss-
Kuzmin-Wirsing operator L is defined for f € ¥V through

(o)

1 1
Limo=" — f( ]
+

m=1 Z+m

L is a nuclear trace class operator of order 0. The eigenvalues A,,, ne Z* of £
are simple and real with alternating sign and with 1; =1, |A,,1] < |An|, and
Y1 lAn|® for every e > 0. Asymptotically

An

= —¢°.

lim
n-oo An+1

£ has the following properties:
J1(2 X)
Tr(L) = _F dx
0 e+1
Tr(L%) = fﬁ dxdy.
(e*+1) (@y + 1)

GaussMap

The Gauss map T is defined as

T.:R->Z
1 1
T(X):-—{—J.
X X

GaussMapFixedPoints
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Let T be the Gauss map
T:R->Z
1 1
T(X)=—~ {—J
X Lx
The fixed points of the Gauss map are the numbers
© 1 yn?+4 —-n

N L}

k=1 n 2
wherenezZ*.

GaussMaplintegral

Let T be the Gauss map

T.R->Z
1 1
T(X)=——{—‘|.
X X

The following integral holds:

il
fT(X)alX:y—l.
0

GaussMaplnverse

Let 7 be the Gauss map
T:R->Z
1 1
T(X)=—— {—J
X Lx
LetO<&é<1and let
< 1
¢=K —
k=1 by
be a regular continued fraction representation of £, Then the inverse r~* of the
Gauss map is given by
o 1 1

f%a={K :mez}={ :meZ}.
k=1'm 6k,0 + (1 - 6k,0) bk+1 f +Mm

GaussMaplsErgodic

The Gauss map is ergodic for the Gauss measure.
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GaussMapRepresentation

Let 7 be the Gauss map

7T.:R->Z
1 |1
T(X):-—{—J.

X Lx
LetO<&é<1and let
< 1
§=0+K —

k=1 b

be a continued fraction and A, /By, the sequence of its convergents. Then
_ An+ Tn(f) An-1
Bn +7"(¢) Bh1

GaussMeasure

Given the measurable space (R, L) where L denotes the o-algebra of Lebesgue-
measurable subsets of R, the Gauss measure is defined to assign to each set
A e L the value u(A), where

1 dA

A= ——
HA In(2) Jal +x

for A the usual Lebesgue measure on R.

GeneralContinuedFractionContraction
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Let
N
a
f = bo + K —
k=1 by
be a continued fraction and p,/q, the sequence of its convergents. The contin’
ued fraction (called contraction)

M
ay
n=po+K —
k=1 By
with convergents P, /Qy, where
P _ P
Qk an
for ng <ny <ny <.. has the numerators and denominators «, 8, where
Pn
Bo=—
On,

Mo+l ] qnl—no—l,n0+1

m=«®“ﬁ1m

j:l qno
ﬁl =0n,
Ng_1+1
Nk1—Ni_2—1
= (=172 1—[ aj | Onyo-ncs—1mcs+1 Ange—nc—1m g +1
j=Nk2+2

ﬂk = an—ﬂk,z—l,nk,2+l

and n_; = —1. Here pn,m/qn,m are the convergents of the continued fraction

n Am-+j
bm + K .
=1 bmﬂ'

GeneralizedContinuedFraction
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There are no fewer than two distinct continued fraction concepts described as
generalized continued fraction.

Perhaps most commonly, a numerical continued fractions & is described as
“generalized”’provided ¢ is of the form

a;
f = bo +

bl + 2

b2+

ag
[

where the partial numerators a,, a,, .. are allowed to be arbitrary. This is in
contrast to the case where a, =1 fork=1, 2, .. , whereby the resulting contin’
ued fraction is considered regular.

At least one other source defines a generalized continued fraction to be any
continued fraction with elements consisting of arbitrary mathematical objects
such as vectors in C", C-valued square matrices, Hilbert space operators, multi*
variate expressions, other continued fractions, etc. As it is written, a numerical
continued fraction can be used to construct one of these generalized fractions
in the following way: Given a continued fraction of the form

f = bO + K(an/bn)

with associated second-order recursion A, =b, An_1 + @, An_2,

B,=bnB,_1 +a,Bn2, N=1, 2, 3, .., subject to the initial conditions B_; =0,
Ag =g, A_; = Bg =1, define an nth order recursion among the elements of &.
The result of this will be a continued fraction £ which is said to be generalized
due to the fact that each of the approximants A,/B, of £ are n-dimensional
vectors rather than numerical constants.

GeneralizedGaloisPeriodicRegularContinuedFraction
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Let £ > 1 be an irrational solution of a quadratic equation with rational coeffi’
cients of the form

¢ P+VD
Q
with p, Q, DeZ with P=0, D>0, and Q >0, and Q1 (D - P?). If its conjugate
P-vVD
]7 =
Q
then & has periodic regular continued fraction expansion
f = bo + K —
k=1 by

with by, ; = b, for n = ng with
np=0if —1<n<0
np=1if0O<np<1
ng=1ifn>1.

GeneralizedGaussKuzminTheorem

Let

g=¢"

and

G=¢,

T, be a generalized Gauss map, U : R? - R? be given by

1

U(X, y) = Tg(x), ,
T e+ ]+ ysgneo

A be the Lebesgue measure on R?, J(x, y) = (0, X) x (0, y), mn(X, Y) be given by
Ma(X, y) =AU (X, y)).

Then
1+xy

Mo, v) = ——2 4 g
m In(G) '

GeneralizedKhinchinConstantLaw
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Let 0 < ¢ <1 be an irrational number with the regular continued fraction
expansion

f bo+K—

k=1 by

Then for almost all £ and p <1, p # 0 the following p-dependent limit exists

1/p
A'rg[n Zb] =t

and is a fixed constant.

GeneralizedKhinchinConstantOfGeneralizedGaussMap

Let Ty, k e (—o0, —1) U (0, o) be the generalized Gauss map

1 1
Tk(X) = T ~ |
k — k —

1-x 1-x

Then for some ¢ € (0, 1) the generalized regular continued fraction expansion

—K—
=1 D;

can be obtained through
b; =T)(&).
Then for almost all ¢£ € [0, 1],

no(bj+1 forbj>0 = ( (j+ |k|)2 sgn(o In( /in(| )
lim ]_[{ ]_[[ .
n-oo -1 |bj| for bj <0 (J + |k|)2

=1

GeneralizedKhinchinConstantOfGeneralizedRenyiMap
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Let Ty, ke (—o0, —=1) U (0, o) be the generalized Gauss map

1 1
Tk(X) = P |
k— |k—

1-x 1-x

Then for some ¢ € (0, 1) the generalized regular continued fraction expansion

_K—
=1 D;

can be obtained through
b; =T)().
Then for almost all £ € [0, 1]

n(bj+1 forbj>0 = (j+k)? oW Inci/nf[ )
lim [1{ rﬂ ) .
o[ ) |bj| forb; <0 (j+ kD% =

=1

GeneralizedKhinchinLevyTheoremOfGeneralizedGaussMap

Let Ty, ke (—o0, —=1) U (0, o0) be the generalized Gauss map

1 1
Tk(X) = - [ ‘
k k

X X

1-x 1-x

Then for some ¢ € (0, 1) the generalized regular continued fraction expansion

< 1
¢=K—
j=1bj

with convergents A, /B, can be obtained through
b; = T)®.
Then for almost all £ € [0, 1]

Bl ")
o <) = n(yi0)-

+u4—ﬁ)fmk>o

1
1
e

+ le( |k|) fork <O0.

GeneralizedKhinchinLevyTheoremOfGeneralizedRenyiMap
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Let Ty, ke (—o0, —=1) U (0, o0) be the generalized Ré nyi map

: lll
x x |
kix ki

Then for some ¢ € (0, 1) the generalized regular continued fraction expansion

< 1
¢=K—
i1 b

Te(x) =

with convergents A, /B, can be obtained through
bj = Ta(©).
Then for almost all £ € [0, 1]

B4l i)
lL“;l'”(n) n(yi)-

+ Liz(—lﬁ) fork <0

1
In[ '%1
1

+ Liz(ﬁ) fork > 0.

GeneralRotationRelationForFiniteRegularContinuedFraction
S

Let ¢ be a finite regular continued fraction

Letk, I, m,ne Z* and k <l <m < n. Then the following identity holds:

i &, 11K )

j=k j=m+1

1Kl 2.5

GeometricinterpretationOfinefficientContinuedFractionSeq
uences
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Let ¢ be an integer continued fraction,

K =
¢ n=1 b,

r, be the continued fraction convergent of &, and A, be a consecutive subse’
quence of b,. Then |b,| = 2 and there does not exist A,, which is inefficient is

equivalent to r, being a Farey geodesic.

GloballyAnalyticHypoellipticAreNotNecessarilyGloballyHyp
oelliptic

Let « be the irrational whose continued fraction a, = 10™. Then
V=d/dx—-ad/dy
is globally analytic hypoelliptic but not globally hypoelliptic.

GoldenRatio
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The oft-studied golden ratio ¢ has a number of equivalent definitions framed in
a variety of different contexts. Historically, the golden ratio is defined to be the
unique number x for which a rectangle of side ratio 1 : x can be divided into a
unit square and a separate rectangle whose side ratio is also 1: X, i.e., it is the
division of a given length into two parts such that the ratio of the shorter to the
longer equals the ratio of the longer part to the whole. Therefore, ¢ is the
unique positive real number for which the identity

¢ 1

1 ¢-1.

The constant ¢ and its various properties have been studied since antiquity with
various constructions attributed to Euclid and Pythogoras, among others.

Simplifying the above identity, ¢ is thus the unique positive real number for
which ¢? = ¢ + 1. Dividing both sides by ¢ yields ¢ = 1 + 1/¢ and thereby yields
a recursive definition of ¢ whose first few terms have the form

1 1 1
p=1+—=1+ =1+

¢ 1+ i 1+

1+-
¢

As this suggests, ¢ is the unique real number whose regular continued fraction
has the form ¢ =[1;1, 1, 1, .. ] or, in Gauss notation,

< 1
p=1+K -
m=1 1
Solving the above equation algebraically yields the exact value of ¢, namely
¢=(1+V5)/2 which, to fifty decimal places, is equal to

¢ =1.61803398874989484820458683436563811772030917980576 ... .

In addition to the above, one can find a vast number of connections between ¢
and the theory of continued fractions. For example, it is a well-known fact that
{p"1}>__ and {y™1}~_ are both solutions to the three-term recurrence
relation X, = X,_1 + Xh,_2, n=1, 2, 3, ... , where ¢ is as above and where

¥ =(1-+5)/2 s the second solution of the equation x? — x — 1 =0, and
because {¢"**} and {y"**} are C-linearly independent elements, they form a
basis of the vector space £, the solution space of the recurrence relation above
and a degree 2 vector space over C. Moreover, because the canonical partial
numerators {An}x_;, respectively partial denominators {B,};.,, of an arbitrary
continued fraction ¢ = K(a,/b,) are also elements of £, it follows that A, and B,
are C-linear combinations of ¢"** and y"*! for any arbitrary continued fraction
&=K(ay/bp), n=1, 2, 3, .. . Among the significant ramifications of this are the
so-called Binet 3 formula, as well as a multitude of significant literature in areas
ranging from operator theory to algebraic field theory and beyond.

GoodBirthRateForContinuedFractions
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Let g be a real number where 0 <qg <1,
> an)(aq)
fo=K
n=1 bn(q)
be a generalized continued fraction, f(q) be the birth-death process from
continued fraction of £(q), k be a positive real, and C(q) be a positive real. Then

given b, <k, 0 < d—“a;:)(q) <C(Q),and 0 < —%;q) < C(q), it follows that

305qlsl (f(Q) is gOOd Q0= Q1)

GoodBirthRateForRogersRamanujanContinuedFractions

Let g be a real number where 0 < g < 1, ¢ be the Rogers Ramanujan continued
fraction of g, and A, be positive reals of its associated birth-death process, i.e.,
where

=1

and

Anp (1-2p) =q".

Then Eloﬁqlﬁ]_ V{Q<q<q1‘n} An > 0.

GraggWarnerHenriciPflugerBounds

Let

N ay
=y

be a generalized continued fraction whose convergents are denoted w,, and

a, >0 and Re(b,) > 0. Set
an

p=—"T-"-"-"-"""""".
Re(b,-1) Re(bn)

Then forallm=n,

" Vdaoi+1 -1

iz=2 Vdai+1 +1

[Wm —Wn_1| <2 a;

GraphPropertiesAssocatedWithHypocycloidConvergents
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Consider the closed hypocycloid S of g cusps whose parameterized form is
given by

X(t) = (@ —1)rcos(t) + rcos((f—1)t)
St = { y=@-2Drsint)+rsin((@—1t)

for0<8=p/q<1andlet ¢ =10;by, by, .. ] denote the simple continued
fraction corresponding to t with convergents &, = A,/B,,n=0,1, 2, .. . Then
the sequence {|B, t — Ap|};_, decreases to zero as n - oo, whereby it follows that
the convergents &, correspond to nearly equally-spaced sets of B, cusps in the
graph of S. Moreover, because

B, 1
By Bht-A)<—=<—
n+1 bn+1

forn=0, 1, 2, .. and because cusps of S “tlump’’for near-minimum values of
Bh |Bn t — Apl, it follows that large values of the partial quotients b, of ¢ also
result in cusp “tlumping”*for the graph of S.

HallTheorem

Hall 3 theorem says that any real number t can be decomposed into a sum of

the form

t=n+[0; by, by, .. 1+[0;b3, b5, .. ]

where ne Z and where 1 <b,, by <4 fork=1, 2, 3, .. . Named after mathemati’
cian Marshall Hall, Hall 3 theorem is meant to provide the set R of real numbers
an analogue of a certain decomposition property Cantor 3 middle thirds set C,
namely that C satisfies the identity

C+C=1+I

where | = [0, 1]. Though difficult, Hall 3 original paper provides details on a

slew of continued fraction constructions and properties; Rockett and Sziisz
provide a second, more concrete elaboration.

HamburgerAssociatedSeriesConvergenceTheorem
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S=)>» —
2
k=1

be a formal power series with coefficients ¢, such that for all n there exist
constants M and p so that

(n=-1)!
lcal =M
n-1
P
holds and the Hankel determinant of the c4, ¢, ..
i C .. Cha Cn
C2 C3 . Cn Ch+1
c.=| : L. . .
Ch-1 Ch .. C2n-3 C2n-2
Ch Ch+1 o C2n-2 C2n-1

is positive for all n. Then the associated Perron continued fraction of S with
variable z converges uniformly in any part of the complex z-plane that does not
contain the real axis.

HankelDeterminant

Given a formal power series of the form fq (z) = Y34, 27", the corresponding
Hankel determinants H,, k=0, 1, .. , have the form Hyo=1 and

Co C - G
C1 Co eee Ck
Hk = . . .
Ck-1 Ck—2 - Cok-2
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HarmanWongConvergentsNumeratorDenominatorPropert

y



166

Results.nb

Let the set of positive integers {cy, C... } be called an acceptable set if
ged(cj, cjop, m)=1forl<j<n-1

Cjs2 =C¢jmodged(cj,q, m)fori<j<n-2

for a positive integer m. (If the set is of length 2, {c,, ¢} it is acceptable if

ged(cy, ¢, m) = 1; all sets of length 1 are acceptable.) Let & be an irrational
nonalgebraic real number with regular continued fraction expansion
E=bg+ 12 i

k=1 b
with convergents numerators A, and B,.
For almost all &, there are infinitely many j such that
Ajii=ci(modm)forl<i<n
and
Bj:i=c¢i(modm)forl<i<n.
If the set of positive integers {cq, C,... } is not acceptable, then there are no
solutions for
Ajii=ci(modm)forl<i<n
and
Bjsi=c¢i(modm)forl<i<n

for any &.

HarmanWongDenominatorValueMeasure
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Let S, be the set of positive integers {c1, C, .. , Cm}.
Let ¢ be an irrational nonalgebraic real number with regular continued fraction

expansion
f = bo + K —
k=1 by

The number of matches Cs_ n

aj+i = Cj

for j < N is for almost all £ asymptotically
Csn ~ (u(p) — u(o)) N

where
H(x) =log,(x + 1)
and
0+ L for meven
k=1 Ck+6kn
pP= 00
o+K2 for m odd
k=1 %
0+K21 for m even
k=1 %

0+ K -1~ formodd.

HaydenConvergenceTheorem

Let £ be the continued fraction
1 fork=1
o~ | g fork>1

k=1 1
with the sequence of convergents A, /B,. If there exist constants s>0and >0
and 0 <r < 1, such that
lagn-11= (1 +q+5)°
lagnl=rq
lagns1l=rs

then the sequence of convergents

A(l—(—l)k+6 k)/4
Q= ———
B(l—(—l)"+6 k)/4

converges.
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HaydenRegionSequenceConvergenceTheoreml

Let V ={Vy, V,, .. } of regions of the complex plane where each V,, is the form
{z:|z|=Ry}or{z:|z] = R,} for R, €R.
If for every p>1, V, or V1 is bounded and there exist sequences of numbers
0<ghp<landO<r,=<1suchthat

|zl <rn gn(1 — gn-1) if V,isbounded

|z = (2 -gn) if V,, is unbounded
and if P={p4, p2, .. } are all indices of the sequence V such that V, is
unbounded and P is either finite or [T, rp, = 0, then for any sequence of
complex numbers a, € V,, the continued fraction

{ 1 fork=1
~ | g fork>1
I

k=1 1
converges.

HaydenRegionSequenceConvergenceTheorem?2

LetV ={Vy, Vo, .. } of regions of the complex plane where each V, is the form
{z:]zl =Ry} or {z:|z] = Ry} for R, eR.

If for every p>1, V, or V,1is bounded and there exists a sequence of numbers
0 < gn < 1 such that

{ |zl = gn(1 = gn-1) if V,isbounded

[z =(2-9n) if V,, is unbounded
and if
w (v (2= g; if V, is bounded

1-0n
21 2 <e0

ey i W W ; if Vi, is unbounded
~Yn

then for any sequence of complex numbers a, € V|, the continued fraction

{1 fork=1

~ | g, fork>1

(=K —--——
k=1 1

converges absolutely.

HaydenRegionSequenceDivergenceTheoreml
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Let V ={Vy, V,, .. } of regions of the complex plane where each V,, is the form
{z:]z| =Rp}or {z:|z| = Ry} for R, eR.

If there exists an integer p > 1 such that both, V, and V,,; are unbounded, then
there exists a sequence of complex numbers a, € V. such that the continued

fraction
1 fork=1
© | g fork>1
f=K "
k=1 1
diverges.

HaydenRegionSequenceDivergenceTheorem2

LetV ={V4, Vo, .. } of regions of the complex plane where each V3,_; is the
form {z: |z] = s} where s > 0, each V3,_; is the form {z: |z| < 1} where s > 0, and
each V3,1 isthe form {z: |z] < 1}.
Then there exists a sequence of complex numbers a, € V| such that the contin’
ued fraction

1 fork=1
o0 { a, fork>1
diverges.

HigherOrderKhinchinConstants
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One constant that comes up regularly in the study of the ergodic theory of
regular continued fractions is Khinchin 3 constant K. However, K = Kg is
merely one of an infinite family of Hdder means K, p <1, associated to regu

lar continued fractions. Indeed, let £ = [bg; by, by, .. ] be a regular continued
fraction and define for each p <1, p £ 0, the limit

N—-oco \ N

1
Kp = lim {— (0 +b5+.. + bﬁ)l/p}.

This value, which is an almost everywhere constant independent of £ or n, is
called the pth order Khinchin constant or the Khinchin constant of order p. The

“Standard Khinchin constant’’is then defined to be the limiting case

Ko = limp oK.

The collection K, possesses many unique and well-studied properties. For
example, when p < 1 is nonzero, it can be shown that K, has the almost every’
where equivalent forms

1 & 1 \0)WP (1 pra/the P
sz[—Zipln(1+__ )] =( f(L [ clt)
In2) = i(i+2) In2) Jo 1+t

and that Ky has analogous expressions of the form

0o 1 InGi)/In(2) 1 111/t]
-l el [
o i(i+2) In2) Jo 1+t

1

almost everywhere. In addition to their obvious ties to the theory of continued
fractions, the family of Khinchin means plays a significant role in the theories of
polylogarithm and computing.

HillamThronConvergenceCorollary

Let £ be the continued fraction
© 3

e=K =

k=1 b

Then ¢ converges if and only if there exists a ¢ e C and r € R with |c| < r such

that for alln= 1,

0 <lap| = (r—Icp (Iby+cl—n).

HillamThronConvergenceTheorem
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Let & be the continued fraction
3

e=K =

k=1 by

Let K be thedisk {z:|z—c|=<r} with|c|<r. If

th(2) cK

where

tn(Z) =
b, +z

forall n=1 and a, # 0, then ¢ converges and & € K.

HurwitzContinuedFractionCoprimeConvergentidentity

Let x be an irrational number, ¢ be the Hurwitz continued fraction expansion of
X, An be the convergent numerator of £, and B,, be the convergent denominator
of £&. Then

AnBn_1— An_1 By = (-1

ImproperlyEquivalent

Two complex numbers &, n € C are called improperly equivalent if there exists
an improperly unimodular map m such that . =m (¢).

ImproperlyUnimodularMap

A unimodular map m is called improperly unimodular if det(m) e {+}.

IndependentAndldenticallyDistributedBernoulliRandomCont
iInuedFractionsMarkovChainConvergesToNonatomicProbab
ity

Let Z, be an independent identically distributed Bernoulli random variable, P

its probability expectation, and X, a Markov chain defined by

Xn=1/Xn_1+ Zn.
Then X, converges to a singular probability 7 invariant under the Gauss map
which is nonatomic.
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IndependentAndldenticallyDistributedBernoulliRandomCont
InuedFractionsMarkovChainConvergesToNonatomicProbab
ilityWithFullSupport

Let Z, be an independent identically distributed Bernoulli random variable, P
its probability expectation, and X, a Markov chain defined by

Xn == 1/Xn_1 + Zn.
Then X,converges to a singular probability = invariant under the Gauss map
which is nonatomic.

InequalitiesForHausdorffDimensionForBoundedPartialQuoti
ents

Let E be a subset of the natural numbers less than or equal to n, E(R) be the
regular continued fractions & whose partial denominators lie in E, and H be the
Hausdorff dimension. Then given n = 8,

1-4/(nIn(2)) <HER))<1-1/(8nlIn(n)).

InfiniteContinuedFractionsArelrrational
Let

kL

n=1 b,
be a regular continued fraction. Then given b, > 0 for all n > 0, it follows that &
is irrational.

InfiniteQuadraticSurdsWithGivenContinuedFractionPeriod

For any k > 0, there are an infinite number of squarefree positive integers N
whose continued fraction of V' N has period k.

InfiniteSumContinuedFraction
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Let ¢ be a positive irrational number with continued fraction expansion
1 < 1
— =Dy + K _
3 =1 bj
with aj e Z* and convergents A, /B, (with B_; =0).
For integer m = 1, define
Sm(&=(m-1) > m1e,
j=1
Then

S|
Sm@ =to+ K —,
=1

where
th=mag

mBn —_ mBn—z
th=—""—"7"-.
" mBeion

InfiniteSumContinuedFractionConvergents
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Let ¢ be a positive irrational number with continued fraction expansion

1 <1
—=b0+K—
3 j:lbj

with aj e Z* and convergents p,/q, (with g_; =0). For integer m = 1, define
Sm(&)=(m—-1) Y m ¢
j=1
with convergents P,/Q,, and
Tn@=(m~1) ) m™"09
=1

where fl(x) = | x] for noninteger x and fl(x) = x — 1 for integer x.

Then
Pn 1l
3 mt- (dn/P)  for n even
=1
Pa=1
n )
Z an_U On/Pnl for n Odd
=1
mql'l a— 1
n =
m-1
and
. Tm(q—”) for neven
n n

Qn Sm (g—”) for n odd.

InvariantMeasureOfGeneralizedGaussMap

Let Ty, ke (—o0, —=1) U (0, o0) be the generalized Gauss map

1 1
Te(X) = - [ ‘

kKiX ki
X

Then the invariant measure gy of T, on the interval [0, 1] is given by
sgnky 1

) Xx+k

X) =
Hk(X) "

In( "

T, is ergodic with respect to y.

InvariantMeasureOfGeneralizedRenyiMap
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Let Ty, ke (=00, 0) U (1, o) be the generalized Ré nyi map

o= - |
k(X) = x x |
kix kiR
Then the invariant measure gy of T, on the interval [0, 1] is given by
- sgn(k) 1
H(X) = :

T, is ergodic with respect to y.

InversionSymmetry

Let
N a
f = bo + K —k
k=1 by
be a continued fraction. Then the following identity holds:
{ 1 fork=1

1 N [a, fork=2

Z_K

& k=1 ( by fork=1
b, fork=2.

IrrationalPeriodicityTheoremForDEXxpansions

Let x be a real number, D be a measurable subset of [0, 1], and &
[ee] an
&= n=1 b,
be the D-expansion continued fraction for x. Then x is irrational if and only if
an and b, are periodic.

IteratedGaussMapDifference
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Let T be the Gauss map

T.R->Z
1 1
T(X)=—~ {—J
X X

Let 0 < ¢ < 1 be an irrational number with regular continued fraction
representation

< 1
E=0+ K =
k=1 b
and A, /B, the sequence of its convergents. Then
ba D" ")
K& o
k=1 bk Bn(Bn + Tn(f) Bn-1)

IteratedLinearFractionalTransformation
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Much of the literature agrees that the first connection between linear fractional
transformations and the theory of continued fractions is due to the work of
Weyl.

On a technical level, there are a variety of ways to define a continued fraction
which formalize the intuitive case of fractional representations of real numbers
and one of the most fundamental ways of doing so is by way of an iteration of a
specific linear fractional transformation. Given an ordered pair

({am}mez+» {bm}mez-) Of complex sequences for which a,, #+ 0 for m = 1, define

the sequences {sn(W)}hez+» {Sn(W)}hez+ SO that sg (W) =bg +w,
ss(wy=a, (b, +w) L forn=1, 2,3, .., Sy W)=sg (W), and

Sn (W) = Sp_1 (Sn(W)),

n=1, 2,3, .. .Byway of a simple substitution, it follows that, for
n=1,2, 3, .., the approximant function S,(w) has the form

Sn (W) =(Sp 08510820 ++- 08,) (W),

or equivalently,

a1
S (W) =bg +

a
bl + as

an

b2+

et

Thus, evaluating S, at w = 0 yields the finite generalized continued fraction ¢ of
the form

am

b

One of the benefits of using this particular nomenclature when defining contin™.
ued fractions is that defining related concepts like convergence, e.g., is a matter
of a very simple notational extension: In particular, one could use the above
definition to say that the sequence &, of convergents converges to an infinite
continued fraction ¢ precisely when & = lim,_,., S, (0). This definition is used
throughout the book by Cuyt et al. and is relatively prevalent among continued
fraction literature. More details can also be found in the 1970 article by Man™.
dell and Magnus.

£=S,0=hy+ K
m=1

IteratedLogarithmLaw
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For a collection {Y,} of identically distributed independent random variables
with means u, = 0 and variances var(Y,,) = 1, the iterated logarithm law says
that with probability 1,

. Sn . Sh
limsup ————=1andliminf —=-1,

">®  y 2nIn(In(n)) e v 2nIn(n(n))

where S, =Y, +--- +Y,. The application of this concept to continued fractions
is a result of the correspondence between the theory of power series related to
random walks and the continued fraction representations of these power series.

IteratedLogarithmLawForNumberOfPartialQuotients

Let kn(x) denote the exact number of partial quotients in the regular continued
fraction expansion x = [by; by, by, ... ] which can be obtained by considering the
first n decimals of x. Then for almost all x € (0, 1), there exists a constant o> 0
for which

kn (X) _ 6In(2)2In(10) n kn (X) _ 6In(2)2ln(10) n
lim sup z =1and liminf : =-1.

= g4/ 2nIndn(n)y) e o+ 2nIn(In(n))

JacobiPerronAlgorithmTheoremInNDimensions

Let x be a real vector in n dimensions. Then the Jacobi Perron algorithm of x
produces a sequence of integral vectors a,(n) where

lim [angle between x and a,(n)] = 0.

k—oo

JacobiPerronAlgorithmTheoremIinTwoDimensions

Let x be a real two-dimensional vector. Then the Jacobi Perron algorithm of x
produces a sequence of integral vectors a,(n) where

lim [angle between x and a,(n)] = 0.

k—oo

JacobiSymbolsOfConvergentsOfRegularContinuedFractionE
Xpansion
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Let £ e R Q have the regular continued fraction expansion

< 1
§=b0+K—.

k=1 by
with convergents A, /By. Then (%) depends only on the residue classes
k

bo, b1, .. , by, where b, = b, mod 4.

JacobiSymbolsOfRegularContinuedFractionExpansionOfE
Consider the regular continued fraction expansion of e
© 1
e = bo + K —.
k=1 by
with convergents A, /By. Then
Ak+24 Ak
( Bk+24 ] - (B_k]

for all k. (Jacobi symbols that are not defined are treated as being equal.)

JonesThronConditionsForContinuedFractionCorresponden
ceTolLaurentSeries

Let

> an(2)

(=K
n=1 pbp(z)

be a generalized continued fraction, P,, be the formal Laurent series satisfying

Ph=an+1 Pns2 + bn Prs1s

be a formal Laurent series set, and A denote the Laurent exponent. Then given
A(bn_1) + A(by) < A(@y) and A(by_q) + A( Py ) < May), it follows that £(z) corre™

Pn+1

sponds to the Laurent series L.

KhinchinConstant
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Named for its discoverer, Khinchin 3 is a constant is a real number K defined to
be the almost-everywhere asymptotic bound of the geometric means of the
partial quotients of an arbitrary real number. Said differently, given a real
number x with corresponding regular continued fraction & = [bg; by, by, .. ], let
Gn(x) denote the geometric mean of the first n partial quotients of ¢, i.e.,

Gy () = (by-by - b)*/".
Khinchin proved that for almost all x e R,
limG, (x)=K

N—oo

where K is a constant independent of n or x. It is unknown currently whether
Khinchin 3 constant K is irrational or transcendental, though to 50 decimal
places, K can be computed to equal

K =2.68545200106530644530971483548179569382038229399446 ... .
Moreover, while it is known that nearly every real number has a regular contin™.
ued fraction, the geometric mean of whose partial quotients approach K asymp™.
totically, no such x € R has been exhibited; on the other hand, several signifi-.
cant real numbers have been shown to have regular continued fractions which
do not approach K, among which are x=e¢, x=v2 , x=v3, and x = ¢, where

¢ denotes the golden ratio. The regular continued fraction of K starts out
K=[2;1,2,5,1,1,2,1,1, .. 1.

Khinchin 3 derivation of the above-mentioned result is actually a corollary
deduced from the proof of a much stronger result. In particular, he showed that
if f(r) is a non-negative function defined on all r € Z* and if there exist positive
constants C and § for which f (N <Cr°+vr,r=1, 2, .. , then for almost all

real numbers x € (0, 1) with associated regular continued fraction
&£=1[0;by, by, .. ],

n 0 In {1 + L }
r(r+2)

From this more general statement, Khinchin 3 constant can be derived by
defining f (r) = Inr, whereby the above equation can be rewritten as

0o 1 Inr/In2
lim+/ by-bp - b =]—[{1+ } :

N-—eo 1 r(r+2)

where the infinite product converges to K almost everywhere. As Khinchin
himself notes, the phrasing of the original result is general enough to allow for
an entire slew of interest results concerning probability densities related to
continued fraction element distribution, etc., though he also notes that no
analogue to the geometric mean result can be formulated for the arithmetic
mean.



KhinchinConstantLaw

Let 0 < ¢ <1 be an irrational number with the regular continued fraction

expansion
< 1
&= bo + K —.
k=1 by

Then the following identity holds for almost all ¢

n 1/n
lim []_[ka =K,
k=1

N—oo

where K is a fixed constant.

KhinchinDiamondVaalerTheorem

Let F; be a positive arithmetical function, e be a positive real, a be an irrational
number where 0 < a <1, ¢ be a half-regular continued fraction of «,
(o9 an

n=1 bn,

N
Sn(F, @)= ZFb(n),

n=1

and ¢(N, a, F) be a positive real where 0 <c¢(N, a, F) <1. Then given

it follows that for almost all «
1+0o(N)

0 1
ZFi In(l + )
In2) 4% i (2+10)

Sn(F, @) = max Fyp,, ¢(N, @, F) +
1<n=N

LagrangeQuadraticlrrationalyTheorem
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Let ¢ be a quadratic irrational, meaning a nonrational solution of a quadratic
equation with rational coefficients. Then the regular continued fraction represen’
tation of ¢,

< 1
f = bo + K —

k=1 b

is ultimately always periodic.

LambdaSubQFractionsHave TheApproximationProperty

A number field is said to have the approximation property if for every
“frrational”’a,
P 1
a— —|<——
k Q2

Q
is satisfied by infinitely many rational elements P/Q of the number field and k
is a positive fixed constant.

The algebraic number field generated by

T
Ag=2 cos(—]
q

for g an odd positive number >3 has the approximation property.

LaneWallCharacterization

Let

N ay
§=bo+K—
k=1 by

be a continued fraction and A, /B, the sequence of its convergents. Let

O Anst Anct
- < 00.
n=1 Br1+1 Bn—l
Then the continued fraction & converges if and only if its Stern-Stolz series
diverges.

LaplaceTransformOfDurationOfExcursionByOccupationPro
Ccess
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Let A be an excursion of occupation process,
A(p) =inf(t>0, A;=C)
be a duration of excursion for A; with C >0 and p > 0, and let 6* be the Laplace

transform of 4. Then the continued fraction ¢* is an S-fraction and
C+1)d(p,C+p+2,u)
0" (p) =

CC+p+LO(p, CHp+l,u)

where ® is the Kummer function.

LebesgueMeasureOfRegularContinuedFractionsWithGivenl
nitialPartialDenominators
Let 0 < ¢ < 1 have the regular continued fraction expansion
o 1
§=0+|£(1 —

The Lebesgue measure A of all £ in [0, 1] that have the initial partial denomina
tors by, by, .. , b, and where the partial denominator b, has the value j is
1

— forj=1
) iae J
— =l forjs1,
(Sn+]) (Sn+j+1)
where
n 1
s, = K .
k=1 bp_yy1

LeightonConjecture

Let the C-fraction

o a;z%
=K =
=11

where aje C\O and a, € Z* and

lima, =
N—oo

lim|a,|"" = 1.
N—oo

Then £(z) converges in the disk D ={z: |z| < 1} to a function f(z) meromorphic
in D and the boundary of D, is the natural boundary of meromorphicity for f(z).
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LevyConstant

The so-called Lévy constant is intimately connected with the Khinchin constant
K which provides an almost everywhere asymptotic bound on the geometric
means of successive partial quotients for an arbitrary real number x € R with
regular continued fraction expansion &. In particular, given x and ¢ as above
with &, = A,/B, the nth convergent of &, the almost everywhere bound of VB,
by a constant (indeed, Khinchin proved that there exist two absolute constants
a, Awith 1 <a< A for which a< \/E < A for almost all x and sufficiently large
n) leads naturally to the question of convergence: Might one be able to com™.
pute an expected value for VB, , and might one also be able to determine an
associated law of large numbers for this quantity?

At around the same time as Khinchin 3 works, Lé vy published affirmative results

to both the above questions: In particular, he showed that for

7.1.2
’y =
121n(2)

and for all sufficiently large n,

<e(n)

1
—In(Bp) -y
n

for almost all t € [0, 1, where €(n) is any positive function decreasing to zero as
n = oo for which ¥3_; 1/(€? (n)-n?) converges. Said differently, Lé vy proved that

VB, —exp(y) as n- co. The constant ¢”, which to 50 decimal places is equal to

e’ =3.27582291872181115978768188245384386360847552598237 ... ,

is now known as Lé vy 3 constant. Worth noting, however, is that the phrase
“tévy 3 constant’’sometimes refers to other related quantities depending on the
author: In particular, some authors use it to denote the exponent

y =n?/(12In(2)), which still other authors call the Khinchin-Lé vy constant. As a

result, some caution must be exercised.

Both the properties possessed by and the proof which derives the Lé vy constant
yield as corollaries many significant results which are of interest in their own
right. For example, Khinchin proved as a corollary of his version of the deriva™.
tion that almost all numbers @ € R satisfies a more general analogue of the
continued fraction approximation property, while still others were able to
derive the same result using a variety of measure-theoretic techniques involving
ergodic theory and the solution space £ of a specific family of three-term
recurrence relations. In a seemingly unrelated application, Corless was able to
show that for an arbitrary real number X, the so-called Lyapunov exponent A of
the Gauss map G evaluated at x has the form

1 In(1/x)
/\(X):Zy:fidm
0o In(2) (1 +x)
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where u denotes regular Lebesgue measure and where v is the exponent of the
Lé vy constant; he also derived an analogous formula for the Khinchin constant
K, namely

1 In(l1/x))
In(K):f —du
0 In(2)(1+x)

Many other results related to the Lé vy constant can be found in the works of
Khinchin, Lé vy, Finch, Corless, Rockett, and Sziisz, among others.

LimitPeriodicContinuedFractioninequalityl

Let ¢ =K(b,/1) =[0; by, by, .. ] be a limit periodic continued fraction, letb+0
be the complex number b = lim,_ b, chosen so that |arg (b + 1/4)| <7 and

Re(\/ 1/4+b ) > 0, and suppose that for n= 1,

(11 1 bl
|bn—b|sm|n{—(‘—+b+——|b|), —}.
2\/4 4 2
Then
11 1,1
f—S,{ b+Z_E] lbl+b+ [b+3 +3
<2d, TR
£SO ol (~1b1 + o + 5+ 5)

where S, (0) = A,/B, is the nth approximant of &, S,, (w) = m*l\‘:vv is the
n n-1

approximant function for all complex numbers w, and d, = maXmsn |am — al.

LimitPeriodicContinuedFractioninequality?2
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Consider a sequence b, n=1, 2, .., of strictly positive real numbers and let
f(z)=K(b, z/1)=[0; by z, b, z, ... ] be a convergent limit periodic S-fraction
which tends to b =limb,, > 0 as n - c. Then, for all complex values z with
larg (2)| <7/2,

1 1
f(Z)—Sn[1/bZ+4‘ —5] 4|zl max |by, — b
< 4dn m=n
f(Z) - Sn(O) - [Xq] D 1 1 1 |
blz| + Re bZ+Z ‘|bZ+Z‘_Z

An+An1Z -
Bh+Bn_12

where S, (0) = A, (2)/B,, (z) = is the nth approximant of f(z), S, (z) =

the approximant function for all complex z, d, = maXny-n |bm — b|, and x; is the
solution of x? + x —a =0 for which D = |x; + 1| — |X;| > 0.

LimitsOfPeriodicCDuallyRegularFractionsAreQuadraticlrrati
onals

Every periodic C-dually regular continued fraction & converges to an irrational
number @ € R\Q which is quadratic over Q.

LimitsOfPeriodicCRegularFractionsAreQuadraticlrrationals

Every periodic C-regular continued fraction & converges to an irrational number
a € R\Q which is quadratic over Q.

LimitsOfRamanujanQSeries
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Define K,,(q) as the generalized continued fraction for |g| > 1

k

> d
Ko@) = K —
k=1 1

and let R(x) be the Rogers-Ramanujan continued fraction and K(x) be
1/5
Ko)=—.
R@)
Then

J!im K2jra(@) = ———

and

LiouvilleAlgebraicindependence
Let ; be a real,

SR
=K
¢ n=1 a(N, i)

be the regular continued fraction of «;, with convergents p(N, i)/q(N, i), r be a

real, f; be a real-valued sequence with

lim fj = oo,

=00

and N; define a subsequence of natural numbers.
Then given r > 1 such that

V(iz1An=zj=1, aNiq, ) =qNi, D)
V(iz1An=j=2,qN;, j-1D=rfqN; j)
V(iz1An=zj=2,qNi+1, j-1=rfiqNj+1, )),

the a; are algebraically independent.

LiouvilleAlgebraicindependenceCorollary2
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Let ; be a real number,

< 1
=K
¢ n=1 a(N, i)

be the regular continued fraction of «;j, gi be real numbers,

_Iim gj = oo,

I—>00

and N; be the subsequence of positive integers. Then givenr>1,r>1,
Y(N=1,aN+1,1)=a(N, 1))

Y(IN=z1An=j=1,aN, j-1D=ra(N, j)

Y(iz1An=j=2,a(Nj+1, j—1) =a(N;, D)%),

the «; are algebraically independent.

LiouvilleAlgebraicIndependenceCorollary3

Let g; be integers, & be the regular continued fraction of 38, g be a non-negative
integer, n be a positive integer, B be an irrational number, g; be a real number,
and define
SyB=@-1 Y g

y=1
Then given g; = 2 with distinct values and ¢ has bounded partial quotients,

Sy, (P) are algebraically independent.

LiouvilleContinuedFractionTheorem

Let a be an algebraic real number and ¢ be its regular continued fraction with
partial denominator by, and B, its convergent denominator, and let d be the
algebraic degree of a. Then there exists a C > 0 such that for all integer n > 1,

b(n) < C B(n)4-2.

LochsConstant
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There are no fewer than two distinct constants attributed to Lochs. The first
and by far most popular is derived as part of Lochs "theorem concerning the
asymptotic relation between the decimal and regular continued fraction expan™.
sions of arbitrary real numbers x. Proved in the 1960s, Lochs *theorem says that
for (Lebesgue) almost all real numbers x for which m(x, n) regular continued

fraction “digits’’(i.e., partial quotients) needed to determine n decimal digits,
. mx,n)  6In(2)In(10)
lim =

Nn—oo n 7'[2_

The above limit, sometimes denoted £, is what is most widely-acknowledge to
be Lochs "constant; to 50 decimal places,
£, =0.97027011439203392574025601921001083378128470478516 - --.

Numerically, £, indicates that 100 decimal digits of every real number x e R
can be unambiguously determined for every 97.02 ... partial quotients of the
regular continued fraction &£(x) associated to x with the exception of a set of
(Lebesgue) measure zero.

This definition is remarkable in that the asymptotic limit £, is absolutely
constant and hence is independent of the real number x € R in question.
Because of its significance, modifying and generalizing Lochs *proof has been at
the heart of a great deal of literature. For example, Lochs "theorem was proved
by Bosma, Dajani and Kraaikamp to be a specific case of the so-called Shannon-
McMillan-Breiman theorem characterizing the asymptotic behavior of the
measure-theoretic properties of an ergodic transformation S with respect to its
entropy h(S). Additional results relating £, with the theory of entropy and
transformations, see the works of Kraaikamp, Billingsley, and Nakada. More™.
over, £, has been shown to be intimately connected to the works of both
Khinchin and Lévy and to the eponymous constants K and e, respectively.

As mentioned initially, there is no apparent agreement on which constant
should be attributed to Lochs. Indeed, some literature refers to the multiplica™.
tive reciprocal L[Ol of the above-mentioned constant (which is also equal to two
times the base-10 logarithm of Lé vy 3 constant ¢") as Lochs "though, of the two,
L, appears to be the more common choice.

LochsTheorem
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Let x be an irrational number where 0 < x <1 and
d,(x)=10""[10" x|
e,(x)=10" (10" x| + 1)
be decimal approximations of x, m be a Lebesgue measure set,
=K =

n=1 g,

be the regular continued fraction of x,

dn(x) = K
n=1 by (n)

be the regular continued fraction of d,(x),

en) =K

n=1 by(n)
be the regular continued fraction of e,(x), and
kn(x) =sup({i:VYi=n, by(i) =by(i)}).
Then

ko 61In(2)In(10)
foralmostall x, Im — = ——.

N—c0 N 71-2

LorentzenConditionsForContinuedFractionCorrespondenc
eTolLaurentSeries

Let

> an(2)

t2=K
n=1 pbp(z)

be a generalized continued fraction, X, be the formal Laurent series where

Xn=2an Xp2 + bn Xn-1,

X
L=_2
X1

be a formal Laurent series, and A denote the Laurent exponent. Then given

A(bn-1) + A(by) < A(@q) and A(by) < 7‘( -

), it follows that &£(z) corresponds to L.

LowerBoundForBestRationalApproximation
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Let @ be a rational number where 0 < a < 1, £ be the regular continued fraction
of a, A, be the convergent numerator of &, and B,, be the convergent denomina’

tor of & Then |Ay — @ Byl = ——.
2Bl+n

LowerBoundForLyapunovExponentsOfGaussMap

Let G(x) denote the Gauss map defined piecewise as
G X forx=0
(x)= x—|x] forx=#0,

and for an arbitrary real number v, let
1 n
Ay) = lim — In(]‘[m'(m]
en \iso
denote Lyapunov exponent of the orbits of the Gauss map (provided the limit
exists) where yo =G (y), ve1 =G (y) fork=1, 2, ... , and G’ denotes the

derivative of G in the usual sense. Under this construction, no orbit of the Gauss
map has Lyapunov exponent smaller than A (1/¢) =21In ¢.

LowerBoundPeriodsForNonSchinzelQuadratics

For an integer X, let
dX)=A?X?+2BX+C
be a polynomial, A, B, C be integers,

A=B%-A%C
A
§=———
gcd(A B)?
X =1/ d(X)

be quadratic irrational numbers, ¢ be the regular continued fraction of x, and
1(X) be the regular continued fraction period of ¢. Given A>0 and

(4 gcd(A? B)Z) mod A #0, then I(X)=1+2 In(\/ d(X) )/In(&).

LubinskyCounterexampleToGeneralPadeConjecture
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Let Hy(2) be a Rogers Ramanujan continued fraction where

q= €4én/(99+\/?)_

Then Hy(2) is a counterexample to the Padé conjecture.

LyapunovExponent

Let G(x) denote the Gauss map which is defined piecewise as

X forx=0

GO0 = { X —|x] forx=#O0.

For an arbitrary real number vy, the Lyapunov exponents A of the orbits of the
Gauss map are defined as

1 n
AG) = lim — In(]—he’mn]
i=0

provided the limit exists, where yo =G (%), yxs1 =G () fork=1, 2, .. , and
where G’ denotes the derivative of G in the usual sense. Conceptually, the
Lyapunov exponent can be thought of as the average rate of separation
between the orbits of points which are initially close as they are iterated under
the Gauss map.

MarkovTheorem

Given a Borel measure o on R — [A, B] with Chebyshev continued fraction &,
then ¢ converges uniformly on compact sets to the Markov function associated
too.

MarkovTheoremForRationalPerturbationsOfMarkovFunctio
ns
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Let A<B and

D=C-[A, B]

be a domain, r be a complex rational function, o be a positive Borel measure
set, ¢(z) be the Markov function of o,

f=r2)+d@2

be a meromorphic function, f,(z) be the Padé approximants diagonals, and g be

a chordal metric on the Riemann sphere. Then given D[] > 0 almost every™.
where in [A, B], it follows that f,(z) converges uniformly on D in the chordal

metric on the Riemann sphere.

Mediant

The mediant of two rational numbers a/b < c¢/d is defined to be the rational
number (a + ¢)/(b + d). By observation, the mediant can be seen to satisfy
a a+c¢c ¢

< <-.
b b+d d

MeromorphicExtensionsOfCertainJFractions

Let f(z) be a J-fraction of the form
1

f(2)= o

a;
z+by - ——
z+b2—>—3

Z+b0—

where a,, b,eC, a,#0forn=0, 1, 2, .. , and suppose without loss of general’
ity that lima, =1/4, limb, = 0. Assume, too, that for some R> 1,

2

=1

aj—

1 .
+|bj|] R) < oo,

and let w = w (z) denote the transformation
1
w@)=> (@+DY2 -z - 142

for all ze C* =C\[-1, 1] under the assumption that the roots of w are strictly
positive for z > 1. Under these hypotheses, f(z) can be extended to a meromor™.
phic function on all of C* where C** is the complete 2-sheeted Riemannian
surface obtained by analytic extension of w from C* across [-1, 1] into a second
copy of C*.
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MonotoneBehaviorOfEvenAndOddContinuedFractionConv
ergents

Let £ =10; by, by, .. ] be a continued fraction (either finite or infinite) which
converges to some number « and let A, /B, denote its nth convergent,

n=1, 2, .. . Then the sequence {A;,-1/B2n-1}p, Of odd convergents of ¢
increase to « and the sequence {A,,/B2n}., of even convergents decrease to «.

MuellerContinuedFraction

Given real numbers p and g, let
XP (L =X T(p + )
C=

IF(p+1I'(o)
g-s
ues)=—
p+s
1 forn=1
X (p+5-1) (p+3) u(s) _
b= 1 ~ @-x(p+2s-2)(p+25-1) forn=2s
S X (p+q+s)

forn=2s+1.

(1=x) ((p+25-1) (p+25))

Then the continued fraction

> 1
&= nI:<1 E
converges to
 B(p, Q)
" CB(p, Q)

MultidimensionalContinuedFraction

A multidimensional continued fraction is an extension of the notion of contin™.
ued fraction representations of real numbers to n-tuples (as, a, .. , a,) inR",
n> 1. First proposed in 1839 by Hermite, the idea of generalizing real contin™.
ued fractions to higher dimensions has been the focus of a considerable amount
of literature. It should come as no surprise, then, that the phrase
“multidimensional continued fraction" exists in a variety of contexts as penned
by many different authors; a few of those expositions are summarized here.

One of the earliest attempts at such a generalization is due to Jacobi who, in
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1868, published an algorithm for computing so-called ternary continued frac™.
tions [(p1, 91); (P2, 92); .. | whose elements (py, q) are all ordered pairs of real
numbers. More precisely, Jacobi 3 algorithm associates to triples uy, vi, w; €R
of real numbers a continued fraction of the form

Vi Wi
(—, —) = [(P1, q1); (P2, 92); (P3, G3); - ]
u; U

whose nth convergents (B, /An, Cn/An) satisfy the four-term recurrence relations

An =0n An—l + Pn An—2 + An—3:

Bn =0n Bn-1 + Pn Bn_2 + Bn_3,

Ch=0nCn-1 + Pn Cn2 + Cp_3,

where Un+1 =Vn = Pn Un, Vni1 =Wp = Qn Un, Wni1 =Up, Pn = [Vn/Unl, and

On = [Wnh/Un]. The upshot of Jacobi 3 method is that it possesses many obvious

properties analogous to the case of standard continued fraction representations

of real numbers. On the other hand, Jacobi 3 algorithm left much to be desired,

most notably the fact that many observable patterns were largely unprovable at

the time.

Since then, many different, largely more general notions of multidimensional

continued fractions have been devised. One of the more well-known of these is

due to Szerkeres, who devised an algorithm whereby sequences [bq, by, .. ] of

positive integers called continued k-fractions are associated with k-tuples

(aq, ay, .. , @) of real numbers via a rather in-depth set theoretic construction.

Like Jacobi 3, Szerkeres "algorithm yields a highly-analogous continued fraction

theory. For example, Cusick 3 exposition on the Szerkeres algorithm illustrates

the process of defining sets of integer k-tuples, respectively (k + 1)-tuples

AM, =AY, ), .., A¥n, )),

respectively

(B(n,0),B(n, 1), .. ,B(n,Kk),

manipulations of which produce nth approximations P, /Q,, = A(Sp, 0)/B(sn, 0)

for the k-fraction [by, by, .. ] of (a1, @2, .. , @) which satisfy the identity
AD(sy, 0)

lim —— =q;

n-o B(sy, 0)

foreachi=1, 2, .., kwhere, here, s,=3}_ b, n=1, 2, 3, .. . This identity is

the multidimensional analogue of the fact that lim,,_,., A,/B, = « for real one-

dimensional continued fractions ¢ with nth convergents &, = A,,/B,,. More

details of this particular construction can be found in Cusick and its references.

Still another popular exposition is due to Schweiger, who approaches the

construction via matrices rather than sequences. In particular, Schweiger

defines a fibered system (B, T) to be a set B and a mapping T : B —» B with the

property that one can partition B into sets {B(i) : i € I} with the property that

T |G is injective for all i € I. Here, | is an indexing set which is as most count".

ably infinite. Under this construction, (B, T) is said to be a multidimensional

rantiniiad frantinn (alen rallad niarawiica frantinnal linaar nrnvidad that R ~ DN
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for some n and that for every “Higit’’k < I, there exists an invertible matrix
a=a k) =((Aj)eGL(N+1, 2),

0 <i, j=n, such that

n
Aio + ZAinj

i=1

Yi=(TXx)i= .
A00+ 2 AOij

=1

for every x e B(k) cR".

Other definitions of various depths and contexts can be found throughout the
literature. A purely geometrical definition can be found in Karpenkov whose
motivation lies in the related work of Klein dating back to the late 19th century.
A more technically sophisticated approach centered on linear algebra and
functional analysis can be found in Khanin et al. Functional multidimensional
continued fractions, including branched continued fractions, are discussed in
the thesis of Aryal, who also examines convergence of multidimensional contin™.
ued fractions and the relationships between such fractions and so-called multi-.
ple power series. Though apparently rare, a small portion of the literature
compares various multidimensional fraction constructions, e.g., Schweiger, who
examines his construction and its properties relative to the constructions of
Jacobi and others. For other similar resources, see the introduction of
Karpenkov as well as its references.

NachreinerGuentherDeterminantFormulas
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Let
N
a
f = bo + K —
k=1 by
be a continued fraction and A, /B, the sequence of its convergents.

Then the following explicit form for the numerators and denominators of the
convergents holds:

b L 0O . 0O 0 O
ag by -1 .. 0 0 O
0 a b, . 0 0 O
Ap=det| : : o : : :
0 0 O bho -1 O
0 0 O an1 by -1
0 0 O 0 a, b,
by -1 0 . 0O 0 O
ay b, -1 . 0 0 0
0 az bs 0O 0 O
B, = det : P
0 0 0 . b, -1 0
0 0 0 . ang by -1
0 0 O 0 a, b,

NearestintegerDistanceExceptionalLimit
There exist irrational numbers & with regular continued fraction expansion

<1
§=b0+K—

=1 b,

and A, /B, the sequence of its convergents such that 8=ma + n for all
m,nezZ*

limmin( 8 Bn], [8Bn]) =0.

NearestintegerDistanceLimit
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Let ¢ be an irrational number with regular continued fraction expansion
< 1
f = bo + K —
=1 b;
with bounded bj e Z* and A, /B, the sequence of its convergents. Let 3 be an
irrational number. Then

limmin(L3Bn], [8B,1)=0

N—oo

if and only if B=ma + nwithm, ne Z.

NearestintegerFractionConvergenceRate

Let a be a real, ¢ be the regular continued fraction of @ with convergents py,/n,

and ¢ be the nearest integer continued fraction of a with convergents A,/B,.
Let k,, be integers where

An pkn

Bn QKn
Then for almost all «,

n In(¢)

i = .
n-oo koo In(2)

NondecreasingexponentCaseOflLeightonConjecture

Let £ be a C-fraction,
> ap z*
&= :
n=1 1
D be the unit disk, and B be the domain boundary set of D. Then given a, # 0,
ane”?”,

Iiman =00

N—oo

limla, /Y =1

nN—oo
n
Vie1 D (D720,
i=1
it follows that & converges in D to a meromorphic function and that B is the
natural meromorphic boundary.

NumeratorDenominatorDerivativeRelation
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Let
N
a
f==b04—l<,—5

k=1 by

be a continued fraction and py/q, the sequence of its convergents. Then the
following relation holds:

@_q
oby

NumeratorDenominatorSymmetry

Let
N
Ak
§==b0%-l(.——
k=1 by
be a continued fraction and A/By the sequence of its convergents.
Let

an-k+1

N
{ZbN-f-K

k=1 bek
be a derived continued fraction and P, /Q, the sequence of its convergents.

Then the following identity holds for the sequences of numerators of the two
convergents:

Ay =Pn.

NuttallTheorem
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Let ej be complex numbers,

H 1
@)= o
[1(z—¢€p)
i=1
be a meromorphic function, R be the hyperelliptic Riemann surface set of H(z)

of genus g = p — 1, n be the hyperelliptic Riemann surface projection set of R,

71 be the hyperelliptic Riemann surface first sheet set of R, 7, be the hyperellip’
tic Riemann surface second sheet set of R, w(z) be a meromorphic function
where

w(z)° = H(2).
Let dG(z) be the Abelian differential of the third kind set of R,

u@z) = Re(fsz(z))

be the harmonic function set with domain R,

I'={z|u(z)=0},

S be the projection of I' composed of arcs S; from e; j_; to e, S™(j) be the
hyperelliptic Riemann surface arc above set of S;, w*(z) be a meromorphic
function

Yxes+(jy W' (T (X)) = W(X),

1
fa) = f o) J
2ni & -2wW*(2)

LeS

be a meromorphic function,
D=n({z:u(z)>0})
be the domain of f(z), p(x) be a holomorphic function where Vs p(x) £ 0, ¥,(2)
be a meromorphic function whose domain is R — I', and whose divisor is
Yi12i + ma(c0) (N = g) — my(c0) n and
Yeer p(0) 11 (Pn(0) = m2(¥n(0)), and
f.(z) be the Padé approximants diagonal set for f at 0. Then
g
(1+0(1) J_g(z - 7))

VH@) ¥h(2)?

f(z)- fn(2) =

OddContraction
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Let £ =bg + K(am/bm) be a generalized continued fraction with nth approxi.
mant &, = A,/Bn. A continued fraction £ = dg + K(¢r,/dm) With nth approximant
¢n =C, /D, is said to be an even contraction of ¢ if and only if £, =&, for
n=0, 1, 2, .. . Note that £ has an even contraction if and only if b, ,,, £ 0 for
all positive integers n.

OstrowskiNumberSystemintegers

Let £ be the positive irrational number 0 < ¢ < 1 with regular continued fraction

expansion
o 1

(=K~
=1 b;

and convergents A,/B;.

For every irrational number & with 0 < ¢ < 1, any integer n can be uniquely
written as

m
N = ch Bk—l!
k=1

where
O<cy=h; -1
O<cy<bifork=2
Ck =01if Cpq = byya.

OstrowskiNumberSystemReals
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Let & be the positive irrational number 0 < ¢ < 1 with regular continued fraction
expansion

< 1
(=K~
=1 b;
and convergents A, /B,.
Let
Oh=E&Bn— An.
For every irrational number & with 0 <& < 1, any real x with 0 < x <1 can be
uniquely written as

m
X= ch |11,
k=1

where
O<cy=bifork=1
Ck=01f cxpg =byysg

and ¢, # by for infinitely many c,.

PadeApproximant
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Given a function f with associated Taylor series A (x) = 219":0 a; xJ, the Padé
approximants to f are a collection of rational approximations devised to pro-.
vide accurate estimations of f by way of matching A as long as is mathemati*.

cally feasible and deviating onward in order to avoid perpetuation of error. In
particular, the [L, M] Padé approximant to f is defined to be the rational

function P_ (x)/Qum (X), where P_ (X) = pg + p1 X + --- + p_ x- and

Qm (X) =g + 1 X + -+ + gy xM are polynomials of degree at most L and M,
respectively, which satisfies the asymptotic relation

A(x) = PL(X)/Qu (x) = O (x""*1),

This asymptotic relation uniquely determines the coefficients p; and qj,
i=0,1,. ,L j=0,1, . , M, the association of which can be written out
algorithmically as follows: Define a, =0ifn<0,q;=0if j>M, and

do = Po
a; +ap0: = P
ax+a;fr+ape = P2
a +ta-101+---+agqL = P
aiitacfp+--+a-maadu = 0
amtagm-1qr+--+aqu = 0.

Note that the above procedure is what remains when the normalization assump’
tion Qy (0) =1 is made; this is assumed in several modern contexts though is
often omitted in classical literature on the subject.

PadeApproximantColumn
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Given a function f(z), the kth column of Padé approximants of f are the Padé
approximants of f of the form

Po(2) P1(2) P2(2)

w2 w2 w@

where, for integers L, M =0,

PLZ)  Pot+PpizZ+--+ pLz"

M@ Go+GuZ+--+QuzM

denotes the [L, M] Padé approximant of f. The use of the term “Column”’is
suggestive of the fact that the collection {[j, k]}, j=0, 1, 2, .. , forms the kth
column of the Padé Table corresponding to f. Worth noting, too, is that the
first column of Padé approximants of f consists precisely of the partial sums of

its Taylor series expansion.

PadeApproximantDenominator

Given a function f(z), the denominators of the Padé approximants of f are the
polynomials qq (2), q1 (2), 02 (2), .. Where, for integers L, M = 0,

PLZ)  Pot+PpizZ+--+ pLz"

amz)  do+0uzZ+ - +QuzV

denotes the [L, M] Padé approximant of f.

PadeApproximantDiagonal

Given a function f(z), the Padé diagonal approximants are the Padé approxi’
mants of f of the form

Po(2) P1(2) P2(2)

0@ w@ oo

where for N a positive integer,

PN(@)  Po+pLz+ - +pyZ

w2 Qo+0Q1Z+ - +qnzV

denotes the [N, N] Padé approximant of f. The use of the term “tHiagonal™’is

suggestive of the fact that the collection of all [N, N] Padé approximants of f,
N=0,1, 2, .., forms the diagonal of the Padé table corresponding to f.
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PadeApproximantNumerator

Given a function f(z), the numerators of the Padé approximants of f are the
polynomials pg (z), p1(2), p2 (2), .. where, for integers L, M =0,

PL@  potprz+-+pz

@  o+0rz+--+qu2"

denotes the [L, M] Padé approximant of f.

PadeApproximantRow

Given a function f(z), the jth row of Padé approximants of f are the Padé
approximants of f of the form

pi@ pj2) pj2

B2 wD w@

where, for integers L, M >0,

PLZ)  Pot+PpizZ+--+ pLzt

M@ Qo+ qrz+ - +quzM

denotes the [L, M] Padé approximant of f. The use of the term “fow”’is sugges’
tive of the fact that the collection {[j, k]}, k=0, 1, 2, .. , forms the jth row of
the Padé Table corresponding to f.

PadeConjecture

Let f(z) be a complex-valued function defined on some domain G c C for which
{zeC: |zl<RforsomeR>1}cG

and suppose that, with the exception of M poles z4, z,, .. , zZy within the disc
|z| < 1 and except for at the point z=1 where f is assumed continuous only
when points |z| < 1 are considered, f is holomorphic on |z| < 1 with correspond’
ing power series F(z). Under these hypotheses, a subsequence of the collection
Po(z) p1(2) P22)

0@ %@ g

of [N, N] Padé approximants to f converges uniformly to f on the set Q as

N - 0. Here, Q) denotes the set formed by removing from the region |z| < 1
arbitrarily small open neighborhoods centered at each pole z,.
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PadeTable

Given a function f(z) with [L, M] Padé approximant

pL(2) _ Potpiz+-+ pz"

M)  do+01zZ+ - +aduz",

L,M=0,1,2,..,the so-called Padé table is a rectangular matrix consisting of
L rows and M columns whose (L, M) entry is identically equal to [L, M]. In
some literature, the Padé table used is the transpose of the table described
here, i.e., it is the M xL matrix whose (M, L) entry is the [M, L] approximant of
the function f.

PalindromicRegularContinuedFraction

Let p>q>1and let

p N1

- = bo + K —

q k=1 by

be the corresponding regular continued fraction with b, € Z*. Then a necessary
and sufficient condition for the existence of a palindromic expansion by_;j = b
for j=0,1,.. ,Nis

pirg°-1
or
pi1g?+1.

PalindromicRegularContinuedFractioninfiniteRadicals
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Let a, be a palindromic string set and m be its string length. For any d be a
square free integer, let

xp=+d

be a quadratic irrational,
o 1
=K —

=1 pd

the regular continued fraction of x4, and I, the regular continued fraction
period of &1. Also let

o= 2(Va +1)

be a quadratic irrational,
=R —

" ne1 p@
the regular continued fraction of x,, b, and |, the regular continued fraction
period of &. Let X be integers d such that either I, =mand b; =aorl,=m
and b, = a. Then X is infinite.

ParabolaTheorem
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There are a number of results of varying generalities which are known as “the
parabola theorem,”’and while most are equivalent (or analogous, in the case of
theorems in more general settings), perhaps the most geometrically-intuitive
version is the one given by Voll and Lorentzen and outlined below.

Suppose a €R is fixed and satisfies |a| < 7/2 and define E, C C to be the subsets
‘ 1
E,= {a €C : |al-Re(ae™??) < 5 cosz(a)}.

A generalized continued fraction ¢ = K(a,/1) for whicha,€E,, n=0,1, 2, ..,
converges to a finite value x € C provided that S (¢) = co where here, S(£) =S
denotes the so-called Stern-Stolz series

00 n 1
_ (—l)”* —
s= [ la
n=1lk=1

associated with &£. Moreover, if S < oo, then {f,,}, {fo11} converge absolutely to

distinct finite values and {S5,,}, {S5,1) converge generally to these values.

Here, f, = Sﬁ (0) and Sﬁ is the Mdius transformation associated to ¢ defined for
all w € C by the approximant function
a;

a
1+ P

Sh (W) =

an

While being somewhat simpler notationally, this particular statement seems at
first glance to have lost the “parabola’’aspect of the theorem; in reality, how™.
ever, the region E, above has a geometric boundary dE, which is precisely a
parabola in the complex plane.

Worth noting is that, because of its rich history, there are a variety of naming
conventions regarding this theorem resulting from contributions made by a
variety of authors. Indeed, it is not uncommon to see any or all of the names
Gragg, Warner, Scott, Paydon, or Wall attached as prefixes. For classical
sources stating and proving results related hereto, see works by Paydon, Scott,
and Wall from the 1940s. In addition, many sources such as Gragg & Warner,
Lorentzen, and Hovstad address various aspects of this theorem from more
modern viewpoints while still others, e.g., Short, Voll, and Lorentzen & Waade’
land, provide geometric interpretations of the theorem and prove theorems
derived therefrom.

ParabolaTheoremEstimation
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Let

k=1 1
be a continued fraction with a, + 0 and A, /B, the sequence of its convergents.
Let
cos?(a)
2
where —n/2<a<n/2. Thenforalln=1

<

law| — Re(ay e72*%)

. 2 .
2 Re(Bn Bn ew) - |Bn—1|2 Z cos |Bn-1l (|Bn—1| - |Bn—1 e =By COS(Q')D-

(@)

ParabolicConvergenceTheoreml

Let P, be a certain parabola in the complex plane with focus (0, 0) going
through z = -1/4 characterized by the fact that b,, € P, if and only if

lbn| — Re(by €72/?) < cos?(@) /2, @ € (-n1/2, n/2). Let £ be a continued fraction of
the form £ =[0; by, by, .. ]. If b, € Py (that is, b, € P, and a = 0) for all

n=1, 2, .. and if at least one of the series

&y bobgebe, & bsbs bz,

2

y=1 b3 b5 b2v+1, =2 b4 b6 b2v

diverges, then ¢ converges to some complex number b.

ParabolicConvergenceTheorem?

Let P, be a certain parabola in the complex plane with focus (0, 0) going
through z=-1/4 characterized by the fact that b, € P, if and only if

lbn| — Re(by €72/?) < cos?(@) /2, @ € (-n/2, n/2). Let £ be a continued fraction of
the form £ =[0; by, by, .. |. Ifforalln=1, 2, .. , b, € K where K is a closed
region contained in the interior of P, and if at least one of the series

& babg-bay, S b3bs-ecbayg

2,

Hbgbs-byye1 S bybg by,

diverges, then ¢ converges to some complex number b.

ParabolicConvergenceTheorem3
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Let P, be a certain parabola in the complex plane with focus (0, 0) going
through z = -1/4 characterized by the fact that b, € P, if and only if

lbn| — Re(by €72/®) < cos?(@) /2, @ € (-n/2, n/2). Let £ be a continued fraction of
the form £ =[0; by, by, .. ]. Ifforalln=1, 2, .. , b, € K where K is a closed
region contained in the interior of P, and if there exists a real number M = O for
which |b,| < M for all n, then & converges to some complex number b.

ParabolicConvergenceTheorem4

Let P, be a certain parabola in the complex plane with focus (0, 0) going
through z=-1/4 characterized by the fact that b, € P, if and only if

lbn| — Re(by €72/*) < cos?(@) /2, @ € (-n/2, n/2), and for a positive number
d < 1/2, define Cy(a, d), C,(a, d) to be regions in the complex plane so that
z=x+1iYyeCyl(a, d) ifand only if

xtane-d<y<xtana+d

and z € Cq (a, d) if and only if

xtan(a) - (1 -d) < y<xtan(a)+ (1 —d).

Let & be a continued fraction of the form & =[0; by, by, .. ]. If for all
n=1,2,..,b,eP,and if at least one of the series

&y babgby, S bgbsecbyyg

2.

y=1

b3 b5 b2v+l, y=2 b4 b6 b2v

diverges, then & converges to some complex number b provided that for all
n=1,2, .., by, liesin one of the regions Cq (e, d), C, (a, d) and by ,_; lies in
the other.

ParabolicConvergenceTheorem5

Let g1, g2, .. be asequence of constants with 0 < g, <1 for all n, let

ae(-n/2,n/2), and let M, € be constants with e <1/2. Then the continued
fraction ¢ = K(b,/1) =[0; by, by, .. ] with elements of the form

b = €®** gn(1 — Gns1) COS?(@) (Un +i Vi), V4 <4 Up +4,
converges to a complex number b provided that |b,| <M, e<g, <1 -¢, and
1)

k=1v=1 Oy+1 — 1

diverges.



Results.nb | 211

ParabolicConvergenceTheorem6

Let —-n/2<a<n/2 and let ¢ =K(b,/1) =[0; by, by, .. ] be a continued fraction
whose elements satisfy |by| — Re(bn e72?) < cos(a)/2 forn=1, 2, ... . If there
exists a real number M > 0 for which |b,| < M for all n, then ¢ converges. More™.
over, if the partial quotients by, are functions of any number of variables, the
convergence of ¢ to a complex-valued function b(z) is uniform provided that the
ranges of the functions by (z) satisfy the aforementioned criteria.

ParabolicConvergenceTheorem?

Let -n/2<a<n/2 and let £ =K(b,/1) =[0; by, bs, .. ] be a continued fraction
whose elements satisfy |by| — Re(bn e727?) < cos?(a) /2 forn=1, 2, ... . If the sum

i 1

n—2 1bnlN

diverges, then £ converges to a complex number b.

ParabolicConvergenceTheorems8

Let -7/2 <@ <n/2 and let P, , be a sequence of parabolas characterized by the
fact that b, € P, , if and only if, forn=1, 2, ...,

. 2n?
lbn| — Re(bn e7%*%) < cos?(a).

4n2-1

If ¢ =K(b,/1) =[0; by, by, .. ]is a continued fraction with b, € P, , for all n,
then £ converges to a complex number b provided that the sum

& 1

o= bl nIn(n)

diverges.

ParametricCurveTrace

Given a parametrized curve vy : (a, b) > R?, the trace of vy is the image set in R?
which is generated by y over a given interval. For such a curve y, its trace is
sometimes denoted {vy}.
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PartialDenominatorsFromApproximationCoefficientsRecurs
lon
Let £ be the the regular continued fraction
M1
f = bo + ]I=<1 b—J
with M < o0, convergents A, /B,, and approximation coefficients

.
.

n

6, = B2

Then the partial denominators b,, can be recovered from the approximation
coefficients through

V1-46, .6, +1
bn+1= .

26,

PellEquationSolution

The Pell equation x2 — d y2 = 1 for nonnegative integers x, y, and d, Vd ¢z

has infinitely many solutions. Let A,, B, be the numerators and denominators
of the convergents of

o 1
Vd =by+ K =
k=1 by

and A be the length of the period. Then the solutions of the Pell equation are

given by
Xn = Ank-1
Yn= Bn k-1»

where ne Z* for even kand n/2 e Z* for odd k.

PellLikeEquationSolution
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Let d be a squarefree integer, ¢ be an integer where |c| < \/ |d| , x and y are

integers,

X
r=-—
y

be a rational number,

-

be a quadratic irrational, £ be the regular continued fraction of z, A, be the
convergent numerator of £, and B,, be the convergent denominator of £. Given

ged(x, y)=1
and
x2-dy?=c
then

Hn(XzAn/\y:Bn)-

Period1ContinuedFractions

Let d be a squarefree integer,

-

be a quadratic irrational, ¢ be the regular continued fraction of x, | be the
regular continued fraction period of & and t be an integer. GivenI=1, it
follows that

J,d=1+"t.

Period2ContinuedFractions

Let d be a squarefree integer,

-

be a quadratic irrational, ¢ be the regular continued fraction of x, | be the
regular continued fraction period of &, k be an integer, and X be a natural
number. Given | = 2, it follows that

Jx (d=2k+K* X*Vd=k+k*X?).

Period3ContinuedFractions
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Let d be a squarefree integer,

-

be a quadratic irrational, ¢ be the regular continued fraction of x, | be the
regular continued fraction period of &, k be an integer, and X be a natural
number. Given | =3, it follows that

Fxd=1+K*+2k(3+4K*) X +(1+4K%) X

Period4ContinuedFractions

Let d be a squarefree integer,

-

be a quadratic irrational,
IOE 1

&= n=1 b,

be the regular continued fraction of x, b, be the partial denominator of &, | be

the regular continued fraction period of £, and m be a integer. Given

| =4, it follows that

b, mod2 =1impliesb; mod2 =1

and

Am 20 =Dy (-1 — by by) + m(2by +bF by)and d =bj — b5 + m (1 + by by).

PeriodicContinuedFractionCriterionForPolynomialPellEquati

on

Let D(t) be a complex polynomial that is not a square. Then the existence of
© ]
=K —
n=1 an(t)
as a regular continued fraction for v D(t) , with a constant period h where
deg(an(t) >0 Aay,=2ap /\ai=ap;

is equivalent to the existence of polynomials X(t) and Y (t) of positive degree
such that

X2 -D) Y(1)? =1.

PeriodicPointsOfDerrickEidswickContinuedFraction
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Let ¢ be a generalized continued fraction
© —a
e=K —.
k=1
Then the value a is a periodic point continued fraction for n if a— 1 is a zero of
L(n-1)/2]

_ k(D K
Po= D, (1) (2k+1)x'

PeriodLengthBoundForContinuedFractionsOfSchinzelSleepe

I'S

Let A, B, C be integers where

A>0 \ (4ged(A2, B?)mod (B2 - A2C) =0
and set

D(X)=A?X?>+2BX+C

be a Schinzel sleeper. Set

. A
A=

gcd(A, B)
A=B?-A%’C

Define Ay, Ay, and A4 by

Al =A; A A,

where A; and A, are squarefree integers, and set

A=A, A2,

Let £ be the regular continued fraction of v D(X) , and Ip be the regular contin

ued fraction period of ¢&. Then
{In(\/? AA)

In(¢)
{ In(\/g A&)

JA Amod2=0
Ip <

@ JA Amod2=1

PeriodsRegularContinuedFractionsOfConjugateQuadraticlrr
ationals
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Let ¢ be an irrational solution of a quadratic equation with rational coefficients.
Then the continued fraction expansion of ¢ has the form

0 1
§=b0+K .
kl{ by fork <kg

Do+ (k—koymodm  fOr k= ko

The conjugate of ¢ has a continued fraction expansion

o0 1
T]=C0+K —,
=1 { Cx for j< jo

Cko+(k—ko)modm  TOT j = Jo

where

Chy+(k—ko) mod m = Om—(ky-+(k—k) mod m)-

PiContinuedFractionlrrational

Let
Ve
X=—
4
and
X forn=1
« | —x%2 otherwise
¢=K
n=1 -1+2n

be a generalized continued fraction. Then £ =1 and x is an irrational number.

PincherleTheorem

Let
© g
=K a
be a generalized continued fraction. Then a minimal three-term recurrence
solution X, exists if and only if &£ converges, and, if such a solution X;exists,

&=—-Xo/ X1

PippengerContinuedFractionValue



The finite Pippenger continued fraction
1

E=1+

-1+t1+

—1+t,( 1+

1+

—1+t3]

has the value

n
[Tt
k=1

=
> (=1 Tt

=1 k=1

PolygonalPolesIinPadeApproximants

Let

D=C-[-1, 1]

be a domain, r be a complex rational function, o be a Borel measure set, ¢(z)
be the Markov function of o,

f=r2)+d@2

be a meromorphic function, V be the poles of f in D, v be a pole, u be the pole
multiplicity of v, p(x) be a holomorphic function where ¥y¢_1 1) p(X) # 0,

f, be the Padé approximants diagonal set at o, U be a complex neighborhood
of v, and V,, be the poles of f, in U. Then given

p(X)
Yyer-1,1) D(O)(X) =

1-x°
u =3, then there exists N such that for all n> N, V,, are simple poles and are
asymptotically configured as a regular polygon.

PolylogarithmContinuedFractionValue
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A generalized continued fraction for the polylogarithm function on a single-
valued branch on C\(-c0, —1/4) is given by
00 an’kZ

—Liy(-2)= K

k=1 1

where, letting i and j range from 1 to m
(_1)i+j+r
A(r,n,m)y=det| ———
r+i+j-2"

Arr,n,0)=1
a;=1

A0, m-1,n)Al, m, n)

AO, m,nN)A(1d, m-1,n)
AO, m+1,nNAl, m-1,n)

A0, m, n) A(1, m, n)

dom =

Aom+1 = —

PorterConstant

Porter 3 constant is a constant Cp appearing in asymptotic formulas for the
efficiency of the Euclidean algorithm and also related to continued fractions. It
can be written in closed form as

6In2) (72 (4y-2+In®)-24,(2)) 1

P = 71-4 + E
where {’(z) is the derivative of the Riemann zeta function, or
61In(2)(48In(A)—2-In(2)-4In(r)) 1
- e B
The constant has numerical value
Cp=1.4670780794339754728977984847072299534499033224148 ... .

Knuth has suggested that Cp be called the Lochs-Porter constant in honor of
Lochs, who investigated the related constant

3 3In®) 247 (2) 6In(2) (6 1

—_ 3In(2 +4y-2]|- ; _5,(2)_5 _

Ve 7T2

4 72 °

0.2173242870 ...

in a significantly earlier but little-known work on contnued fractions.

PositiveAlgebraicNumbersCanBeRepresentedAsPeriodicBra
nchedFractionsWithNaturalElements
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Any positive algebraic number can be represented as a periodic branched
fraction with natural elements.

PositiveProportionOfConvergentDenominatorsForConstrai
nedPartialQuotientsBoundedHausdorffDimension

Let A be a set of natural numbers, C, be regular continued fractions whose
partial quotients c A, R be finite regular continued fractions whose partial
quotients c A, DA(N) be denominators d of Ry such thatd <N, f(N) =& Da(N),

and H be the Hausdorff dimension. Then given H(Cp) > %, it follows that

f(N) = O(N).

PositiveProportionOfConvergentDenominatorsForContinu
edFractionsWithBoundedHausdorffDimension

Let A be a set of natural numbers, C, be regular continued fractions whose
partial quotients c A, R be finite regular continued fractions whose partial
quotients c A, DA(N) be denominators d of R, such thatd <N, f(N) =& Da(N),

and H be the Hausdorff dimension. Then given H(C,) > 1+ (-27 + V633 ) /186,
f(N) = O(N).

PositiveProportionOfConvergentDenominatorsForPartialQ
uotientDenominatorsBoundedBySeven

Let A be the natural numbers <7, C, be regular continued fractions whose
partial quotients c A, R, be finite regular continued fractions whose partial
quotients c A, DA(N) be denominators d of R, such that d < N, f(N) =& Da(N),

and H be the Hausdorff dimension. Then
f(N) = O(N).

PositiveRealFunction
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Let f be a map from the right half-plane of C to itself which maps the real axis
onto itself. Then f is said to be positive real if it is single-valued and analytic in
the open right half plane and if the real part Re(f(2)) is positive for all z in the

open right half plane.

PringsheimContinuedFractionConvergence

Let

> a
¢=K =
n=1 1

be a generalized continued fraction and r,, be real numbers. Given
I, O<rp<1Alajl <(1-r_q.) 1), then & converges.

ProbabilityTheoremForVarianceOfContinuedFractionCoeffi
cients

Let & be the continued fraction representation of an element x € (0, 1) where
& has the form &, = [0; bf”, b, ... |. Then, for fixed K, the set of all x in (0, 1)
for which the average of the first K coefficients b\, b”, .. , BY differs from
log,(K) by more than a prescribed value € > 0 is a set of measure zero as K — co.

Symbolically, for arbtirary e > 0 and for x € (0, 1) a uniformly distributed
random variable,

% b /K
lim pr J|= | _1sel—p
Koooxe©1) || log,(K)

Here Pz\{f(x)} denotes the probability over all random variables x in A that the
Xe

statement f(x) holds. Moreover, this result cannot be strengthened to say that
(Tn=1an/K)/l0g, (K) > 1 for almost all x in (0, 1).

ProductToContinuedFraction



Let ¢, # O for all integer k = 0 and

N
e=]]a+co.
k=0

Then the continued fraction
{(1+c0)c1 fork=1
N

—(1+¢q) ci—kl fork>1

=1+¢+K
7 0 k=1{l fork=1

1+(1+Ck—1)ci_: fork>1

has the property that for all integers m > 0 the following identities hold:

(L+cg)cy fork=1
—(1+¢q) cc—k fork>1
k-1

m m
n(1+ck)=1+co+K
k=1

K0 1 fork=1

1+(1+Ck‘1)c§_: fork> 1.

ProperlyEquivalent

Two complex numbers &, n € C are called properly equivalent if there exists a

properly equivalent unimodular map m with n=m (¢).

ProperlyUnimodularMap

A unimodular map m is called properly unimodular if det(m) € {+1}.

PropertiesOfDiscrepancy
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LetEc[0, 1, w= {xn},ﬁ‘=l a sequence of real numbers and define A(E; N; w) so
that
AE;N;w)=8{n: 1=<n<Nandfrac(x,) € E},
where & A denotes the number of elements of A for all sets A and frac(y)
denotes the fractional part of the element y for all y.
Llet Dy be the discrepancy associated to finite segments of w, i.e.,
A(la, B); N; w)

Dn(w)= sup |———— - (B-a)|

O=a<fB=l N

Then necessarily 1/N < Dy <1 where Dy = 1/N if and only if
{Xn}r':lzl = {(n - 1)/N}r’;‘:1-

PropertiesOfStarDiscrepancy

LetEc[0, 1, w= {xn},ﬁ‘=l a sequence of real numbers and define A(E; N; w) so
that

AE;N;w)=88{n: 1=<n=<Nandfrac(x,) € E},

where & A denotes the number of elements of A for all sets A and frac(y)
denotes the fractional part of the element y for all y.

For an arbitrary sequence w = {xn},ﬁ‘=1 of real numbers with fractional parts
frac(xy), frac(xy), ... , frac(xy) ordered increasingly by magnitude,

Dy, =Dy =2Dj and 1/(2 N) < Dy, < 1. Here Dy and Dy, denote the discrepancy
and star discrepancy, respectively, associated with the finite segments of w and
are defined to be

A(la, B); N; w)

Dn (w) = sup
N

O=<a<p=1

and

-Bf-a
i ‘ i—-1

N-00l IN=(x) }
respectively. Moreover, the equality Dy, = 1/(2 N) holds if and only if
Xn=02n-1)/2Nforn=1, 2, .., N.

Dy = max max
i=12,.. ,N

Property:.ConvergeGenerally
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The generalized continued fraction ¢ = K(a,/by) converges generally to
feC=C U {oo} precisely when its associated Mddus transformation S, (¢) =S,

converges generally. Here, S, is defined for all w € C by the approximant
function

ap
Sn (w) =

b]_ + 2

ag

b2+ o
o
b+

and is said to converge generally to a constant y € C if and only if there exists a
sequence {w,,} from € such that lim,_,., Sn (Wn) = y Whenever

liminfm(w,, w_|>0

N—-ook>n ( K k)

where m denotes Ahlfors >thordal metric.””’One can easily show that conver™.

gence in the general sense is an immediate consequence of convergence in the
classical sense.

Property:LyapunovExponentExists

Let G(x) denote the Gauss map which is defined piecewise as

G X forx=0
()= X —|x] forx#0,

and let A(y) denote the values of the Lyapunov exponents (if they exist) of G for
v €R an arbitrary real number. By the ergodicity of G, one can conclude that
the Lyapunov exponent exists for the orbits under G of almost all (with respect
to either Lebesgue or Gauss measure) y € R. Moreover, the value A(y) can be
computed explicitly for elements y € R whose G orbits do omit well-defined
Lyapunov exponents and is precisely
2 1 |In(x) 72

Ay)=—-—= dt(x)= ,

In(2) Jo 1+x 61In(2)
where ¢ denotes the Lebesgue measure on R. Despite this, the collection N of
initial points y € R for which A(y) fails to exist is actually dense in R as, for
example, Q c N.

PurelyPeriodicSequence

A sequence ay, ap, as, .. is purely periodic if there exists a positive integer
p e Z" such that a,,, = a, for every positive integer ne Z".
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QuadraticlrrationalsAreBadlyApproximableNumbers

Let @ be a quadratic irrational number where 0 <o <1 and ¢ be the regular
continued fraction of a. Then ¢ is badly approximable.

QuadraticlrrationalswithPeriod Twelve

Let d be a natural number where
dmod4 =3

and ¢ be the regular continued fraction of V'd , I(d) be the period of £, and S(X)
be natural numbers where d < X and I(d) =12. Then

1S | =0(VX In(x)).

QueffelecTheorem

The continued fraction of a Thue-Morse sequence is transcendental.

QuinticBoundOnComputingTimeOfContinuedFractionsMet
hodForPolynomialRealRootlsolation

Let A be a continued fraction method with root bounds algorithm, p be the
input polynomial of A, n be the polynomial degree of p, and t(A) be the comput’
ing time set of A. Then there exists a constant ¢ > 0 such that ¥ n 3 p such that
t(A)=cn°.

RadiusOfConvergenceForGSeriesAssociated ToRogersRama
nujanContinuedFraction
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Let T be an irrational number, define the modular nome by
q= eZiﬂT
as the parameter of the Rogers Ramanujan continued fraction,

o k% Sk

Gy =

o (@ Dm
be its associated holomorphic function, and R, be the holomorphic radius set of
Gy(2). Then

z

Rq = liminf|1 — q"[*".
N—oo0

RamanujanSelfReciprocalContinuedFraction

The continued fraction
[ k2
=1+ K —

k=1 X

with the closed form value

§(X) — 1 (W(O)(E) _ w(O)(X + 1))
2 4 4

for Re(x) > —1 fulfills the self-reciprocal identity

f(x)—fﬂg(s)sin(x—ﬂs)cﬂs
B 0 2 '

RationalsinTheFareyProcess

Every rational number p/q in lowest terms with 0 < p/q < 1 appears at some
stage of the Farey process provided that the process begins with the numbers
0/1land1/1.

ReddmannTheorem
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Given a real number & with finite regular continued fraction expansion

N1
E=0+ K —.
k=1 by
and finite base-b expansion (0.d; d, --- dyp, the terms of the two expansions are
equal (b, =d,forn=1, 2, .., N) for N <2 when and only when:
a) For N=1,£=1/bsand b=b2.

2100332

b) For N=2, (¢=4/9and b=6) or (¢ = -

and b =38614134).

RegularChain

A regular chain is an infinite product T Ty --- T, --- where Tp = VEO, bpeZ,
Ty # V4, and

Tne{V;, Ej, C} fordet(ToTy -+ Thy) =+1
{ Toe{V;,C}  fordet(ToTy - Tn_1)==+i

forn=1such that nonp e Z*, je {1, 2, 3} exist for which T, = Vj for all n = nq.
The matrices used here are defined as follows:

v (LAY (L0 (L i

1_(0 1)’ 2_(—i 1)' 3_( i i+1)
1 0 1i-1 i 0

El:(l—i z')’ EZ:(O i ) E3=(o 1)

1 i-1
C_(l—li i )

RegularContinuedFraction
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A continued fraction ¢ is said to be regular if it has the form

1
£=bg+ ———,
b1+ L

1
b2+j

where by e Z forall k=0, 1, 2, .. and where b, >0 for k= 1. The regular
fraction & above can also be written & = [bg; by, by, .. ] or, using Gauss notation,
< ]
f = bo + K —.
m=1 b,
The terms by are said to be both the partial quotients and the partial denomina’
tors of &, as the partial numerators of £ are all identically 1.

It is not uncommon in literature for the unmodified term “tontinued fraction”’
to mean “fegular continued fraction,”’and despite an apparent loss of generality
in doing so, no such loss exists. Indeed, a well-known result in the study of
continued fractions is the existence of an equivalence transformation r = {r}
between any generalized continued fraction ¢ and an associated regular contin®.
ued fraction &g, Whereby it follows that any theory for generalized continued
fractions holds for regular fractions and vice versa. Regular continued fractions
are especially useful when representing irrationals, for example, because the
convergents of regular continued fractions are the so-called best rational
approximations thereof.

RegularContinuedFractionApproximationsSpecialFractions

Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation

< 1
¢=0+K —.

k=1 by
LetaeR, a> 1. Then for all £ with infinitely many b, > a, there exist infinitely
many rational numbers p/q, such that the inequality

p 1 1

éf N —
q

<

a2+4 U

has infinitely many solutions for p/q.

RegularContinuedFractionAsymptoticDenominatorDistribut
lon
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For almost every x € [0, 1] with associated regular continued fraction
£(x)=[0; b}, b3, .. ], the digit j appears in the expansion of ¢ with density
2Inl+ j)—-In(j)—In2+ j)

In2 '
Said a different way, for any i Z*,

_card{k: b,=i,1=<k=n}
lim =
Nn—oco n

2Inl+ j)—-In(j)—In2+ j) 1 1
= In(l + )
In(2) In(2) i(i+2)
for almost all x € [0, 1] where here, [0; by, by, ... ] is the regular continued

fraction expansion associated to x. This result was originally discovered by Lévy
in the early 20th century.

RegularContinuedFractionAveragePartialQuotientGrowth

Let 0 < ¢ < 1 be an irrational number with regular continued fraction
representation

< 1
§=0+K—.

k=1 by

For almost all ¢ the following identity holds:

1 1
liminf — In(In(n))(max bj) =—.
n-co N 1<j=n In(2)

RegularContinuedFraction.CommonNotations



Common notations for the regular continued fraction

§=Dbo +
b1+

1

b2+
b, —

include
& =1[bg; by, by, bs, ... ]
&=(bo; by, by, b3, .. )

f=b 1 1 1
=bg+ — —— ..
0 b1+b2+b3+
SN Y DY PR
=bgy + + + + .. ringsheim
N P I I ’
and
© 1
§=b0+K—(Gauss).
k=1 b

In Gauss 3 notation, the uppercase K stands for “Kettenbruch,”’which is German
for “tontinued fraction.””

While most authors use a, instead of by to denote the terms of a regular contin’
ued fraction, the by, convention is followed here since it is consistent with
notations for generalized continued fractions in which a, denotes a partial
numerator and b, a partial denominator.

Common notations for the nth convergent of a continued fraction include p,/qn

and A, /B, the former being more prevalent in older papers and the latter
being more common in the recent literature. Here, the notation A, /B, is used.

RegularContinuedFraction:CompleteQuotient

Given a regular continued fraction ¢ of the form

1
£=bg+ ———,
b1+ L

1
b2+j

the nth complete quotient ¢, of ¢ is the continued fraction obtained by ignoring
the first n partial denominators by, .. , by_1, i.e.,

1
= bn + 1
bn+1 + -
n+2+ 7

Other notations for ¢, are ¢, = [bn; bns1, iz, .. ] Or, in Gauss notation,
< 1
{h="Dbn+ K —

m=n+1 p . .

Results.nb
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RegularContinuedFraction:CompleteQuotientDenominator

Let £, be the nth complete quotient of a regular continued fraction
& =[bg; by, by, .. 1, i.€., &y is the regular continued subfraction of the form
1
gn = bn + 1
bn+1 + -
bn+2+f

The denominators of £, are the positive integers by, bn,1, bps2, .. Which, more
generally, can be described as the collection of elements b, for k> n.

RegularContinuedFraction:CompleteQuotientNumerator

Let £, be the nth complete quotient of a regular continued fraction

&=[bg; by, by, .. 1, 1., &, is the regular continued subfraction of the form
1

{n=Dbn+

1

Bies + —.
bn+2+?

Due to the fact that ¢, is regular, the numerators of ¢, are all identically 1. Said
another way, the continued fraction £, can be written in Gauss notation as

< 3
{h=Dbp+ K =

m=n+1 P,

where, forallm=n+1,n+2, .., ay, =1 are its numerators.

RegularContinuedFraction:Convergence

A regular continued fraction ¢ of the form

&=Do +

1
b1+

1
b+
2 by+---

with nth convergent &, = [bg; b1, bo, ... , by] is said to converge to a value x if
&, - X as n - co. Note that the concept of regular continued fraction conver™.
gence is merely an example of generalized continued fraction convergence
where the continued fractions in question have partial numerators a, satisfying
a=1,k=1,23, ...

RegularContinuedFraction:Convergent
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Given a regular continued fraction ¢ of the form

1
§=bo+ ——7—,

1
bl + ) 1
2+b3+~~

its nth convergent &, is the finite continued fraction obtained by truncating ¢ at
the nth level, i.e.,

§n=b0+

1
b1+

1
L1

4=
bn

b2+

Alternate notations for &, include the shorthand &, = [bg; by, by, .. , by], as well
as Gauss notation

n1
én=by+ K —.
m=1 b,
Note that this definition is nothing more than a specialized version of the
definition of convergent for a generalized continued fraction except that the

fraction & in question has partial numerators a, which satisfy a, =1,
k=1,2,3, .. .

RegularContinuedFraction:ConvergentDenominator

Given a regular continued fraction ¢ of the form

1
£=by+ ———,
b1+ L

1
bo+
2 by+---

its nth convergent denominator By, is the expression in the denominator of the
nth convergent &, = A, /B, where &, is the finite continued subfraction of the
form

§n=b0+

1
b1+

1
o1

+—
bn

b+

Note that this definition is nothing more than a specialized version of the
definition given for a generalized continued fraction except that the fraction &
in question has partial numerators a, which satisfy a, =1, k=1, 2, 3, ... .

RegularContinuedFraction:ConvergentNumerator
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Given a continued fraction ¢ of the form

1
§=bo+ ——7F—,
b1+ 1

b2+b3+..,

its nth convergent numerator A, is the expression in the numerator of the nth
convergent &, = A, /B, where &, is the finite continued subfraction of the form

§n=b0+

1
b1+

1
L1

4=
bn

b2+

Note that this definition is nothing more than a specialized version of the
definition given for a generalized continued fraction except that the fraction ¢
in question has partial numerators a, which satisfy a, =1, k=1, 2, 3, ... .

RegularContinuedFractionConvergentsApproximationPrope
rty
Let
N 1
§=bo + 5 o
be a regular continued fraction with b, € Z* and A, /By the sequence of its
convergents. Then
1 1
- Bn Bn+1 B_ﬁ

é.‘__
Bn

RegularContinuedFractionConvergentsApproximationsBett
erThanRoot5

For any continued fraction ¢
< 1
¢=K —
k=1 b
with convergents A, /B, set
1 1

B fe- &

n

Then for all ¢> V5 there is & with finitely many A, > c.



RegularContinuedFractionConvergentslrreducibility

Let
E=bo+ IN< i
k=1 b
be a regular continued fraction with b, € Z* and p,/qy the sequence of its
convergents.
Then for all n e Z*, the following identities hold for the convergents:
ged(pn, On) =1
ged(pn, Gn+1) =1
ng(pn+1, Qn) =1

RegularContinuedFractionConvergentsMembership

Let p/q be an irreducible fraction. Let & be a positive real number. If

1
-2l L
q

<5
or
|p® - q? | <&

Then p/q is a convergent of the regular continued fraction of &.

RegularContinuedFraction:Divergence

Divergence of a regular continued fraction ¢ of the form

&=Dbo +

1
b1+

1
—_
b2 bg+--

with nth convergent &, = [bo; b1, b, .. , by] occurs when &, fails to converge to
a finite expression as n - co. Note that this definition is nothing more than a
specialized version of the definition given for a generalized continued fraction
except that the fraction ¢ in question has partial numerators a, which satisfy
a=1k=1,23, ...

RegularContinuedFraction:Expansion

Results.nb | 233
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Given a constant c, a regular continued fraction expansion is an expression of
the form

© 1
f=bo+K—

k=1 bk

with partial denominators by, taken from some domain, usually positive inte
gers, such that ¢ =c.

RegularContinuedFraction:FiniteContinuedFraction

A finite regular continued fraction ¢ is a regular continued fraction of the form

&=Dbo +

which terminates after only finitely many terms.

A well-known result in the theory of continued fractions is that the associated
continued fraction &(a) of an element @ e R is finite (and hence is of the form
& (@) =1[Bo; B1: B2+ - » Bnls Bk e Z for all k, B, 0 for n = 1) precisely when

a € Q. For that reason, finite continued fractions play an important role in
many branches of mathematics due to the fact that irrationals (i.e., elements
whose associated continued fractions are infinite) can be estimated arbitrarily
well by such terms.

RegularContinuedFractionFirstThreeConsecutiveConvergen
tsApproximationPropertyForPartialQuotientsGreaterThan
One

For any continued fraction ¢
o< 1
i¢=K —
k=1 b
with convergents A, /B,, set
1 1

Then by, = 2 implies that max(An, Ans1, Ans2)>2V2 .

RegularContinuedFractionFiveConsecutiveConvergentsApp
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roximationPropertyForPartialQuotientsOneTwo
For any continued fraction &

s |
=K —
k=1 b
with convergents A, /B, set
1 1

= E ~ h .
n ¢ Bn|
Thenbp,; = 1andb,,, =2 implies

maxX(An, Ans1, Ans2, Ansz, Ansa) > (2+5V10 ) /6.

An

RegularContinuedFractionFordCircleChains
Let & be a positive real number with regular continued fraction expansion

© 1
f=bo+K—

i=1 b,

and convergents A,/B;.
Then the Ford circles of the convergents A, /B, form a chain, meaning the Ford
circle of the convergent A, /By is tangent to the Ford circle of the convergent

Aii1/Bis-

RegularContinuedFractionGeneralConvergentsApproximati
onProperty

Let x be an irrational number and

< 1
¢=K —
n=1 b,
be the regular continued fraction of x with convergents A,/B,. If
A, 1
-3
Bn

Vr2+4 B2

holds for all ne {m -1, m, m + 1}, the inequality b,,1 < r holds.

RegularContinuedFractionHalfRegularContinuedFractionCo
nvergentsRelation
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Let ¢ have the regular continued fraction expansion
< 1

f = bo + K —
k=1 by

and A, /B, the sequence of its convergents. Let & have the half-regular contin’
ued fraction expansion

§=Bo+128—k
k=1 By

and pn/q, the sequence of its convergents with ¢, € {-1, 1}, Bk € Z*, B =2 and
Bk + k1 = 2, 1 =5gn(), |B1 —1/I€l1 < 1/2.
Then for all n = 0 there exists a unique function k(n), such that

An+1 pk(n)+1 An+1 pk(n)+2
= or =

Bnit  Okmy+z Bnir  Oknye2
with the latter case if and only if by, = 1. For almost all ¢

k(n) In(2)

i =
n-co N |n(¢)
holds.

RegularContinuedFractionLevelSetFactl

Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ el have the
regular continued fraction expansion

oS 1
¢=K —

k=1 bk

with convergents A,/B,,. Let

n
[1b;j
j=1

Fo=1<xel:lim
N—co Bn

then
Foa=0ifa¢]0, 1].

RegularContinuedFractionLevelSetFact2
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Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ el have the
regular continued fraction expansion

© 1
¢=K —
k=1 by

with convergents A,/B,. Let

n
[1b;j
.=
Fo=1<xel:lim =a«
N—-oo Bn
and
N ={xel:3,¥msnbm =1},
then
NCT().

RegularContinuedFractionLevelSetFact3

Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ el have the
regular continued fraction expansion

< 1
é=K —
k=1 b

with convergents A, /B, and n be the quadratic surd

< 1
nkZK—.
k=1
Let
n
[1b;j
.=t
Fo=3xel:lim =a
n-oo Bn

then
Mk €F _ino /(infk2+(2/4+1)"?)
and

lim -In(k) /(In(k/2 + (K% /4 + 1)"%) = 1.

k—oo

RegularContinuedFractionLevelSetFact4
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Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ €1 have the
regular continued fraction expansion

< 1
é=K —
k=1 by
with convergents A,/B,. Let
n
[1b;j
j=1

L
Fo=1<xel:lim
N—-co Bn

=a

and

NZ{XE[I:“mijOO}

Jjooo
then
N c 7:1.

RegularContinuedFractionLevelSetFact5

Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ €1 have the
regular continued fraction expansion

< 1
¢=K —
k=1 by
with convergents A,/B,,. Let

n
[1b;j
-1

Fo=4xecl:lim
N—oco Bn

=a.

Then for almost all x 1,

XE€F1amne2) In(K)/x2

holds.

RegularContinuedFractionLevelSetFact6
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Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ €1 have the
regular continued fraction expansion

< 1
é=K —

k=1 by
with convergents A,/B,. Let
ln_lbj

xel:limsup j:; >ap fora=12In(2)In(K)/x?

N—-oco

Fo = ;
ITb;

xel:limsup % <ap fora=12In(2)In(K)/=%

N—-oo

Then for aq=1-1/(q? In(q))
{X€[| . ijl bj ZQ}CT(;.

RegularContinuedFractionLevelSetFact7/

Let 1 be the set of irrational numbers from the interval [0, 1]. Let & €1 have the
regular continued fraction expansion

~ 1
¢=K —
k=1 by

with convergents A,/B,,. Let

n
[1b;j
=1

Fo=3<xel:lim
N—oo Bn

=a.

Then if x € 1, then

limb; = oo.

Jjooo

RegularContinuedFractionLevelSetFact8
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Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ €1 have the
regular continued fraction expansion

< 1
é=K —
k=1 by
with convergents An(¢)/Bn(&). Let

n
[1b;j
1

L
Fo=1<xel:lim
N—oo Bn

=a.

Then the Hausdorff dimension of 7,
dim(%,) = f(@),

where

f(a) = max(-t(a), 0).

Here, t() is the Legendre transform of t(a)
t() = sup(c a — t(c))

ceR
and t(B) is defined implicitly through P(t(8), 8) =0 and
1 ) o0 Ir|< 1 -2t n 25
P, B)=lim —In B — bi ™" |.
ep=pmin 3 Se(K ][]
bi=1  bp=1 =1

The function f(a) is strictly convex in [0, 1] and continuous and real-analytic in
(0, 1). Its maximal value is

f( 121n(2)In (K))

72
Furthermore,
f(0)=0

1
f(l)=—

2
lim f'(@) =
a—0*
lim (@) = —co.
a-1"

RegularContinuedFractionLevelSetFact9
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Let 1 be the set of irrational numbers from the interval [0, 1]. Let £ €1 have the
regular continued fraction expansion

< 1
¢=K —
k=1 bk

with convergents A,/B,. Let

n

[1b;j

j=1
Fo=1<xel:lim =a«

N—-oo Bn
and
I { 1 Izl/\v b }
={xel:x=K — w1 bi=qp.
q 21 by =10j=(q

Then the Hausdorff dimension dimy of 7

. 1 1 Indn())
dimyZg~—+—
2 2 1In(@

as g - oo.

RegularContinuedFractionMeanConvergentsApproximation
Property

For any continued fraction ¢
o< 1

¢=K —
k=1 by

with convergents A,/B,, set
1 1

:—2 A .
B -5

An

Then

1 m-1
liminf — ZMZ\/?-
momi5

RegularContinuedFractionNConsecutiveConvergentsAppro
XimationProperty



242

Results.nb

Let

N1
§=bo+K—

k=1 by

be a regular continued fraction with b, € Z* and A, /By the sequence of its

convergents.
Thenforallnez*, kez”*
}] < Cg

e

where

Ani1 Ansk

An
f__!
B

n

2
» 0 Brsk

2
Bn+1 -

é‘.‘_

n+1 n+k

Ck

~ 1 1 {3_\/€]Zk+3
VE Vsl 2 |

The constant ¢, is the best possible constant.

RegularContinuedFraction:PartialDenominator

The partial denominators of a regular continued fraction ¢ of the form

N1
§=bo+K —

m=1 b,

(where N may be infinite) are the elements b, k=0, 1, 2, ... .

RegularContinuedFraction:PartialNumerator

Given a collection of integers {by},”, with b, # 0 for n > 1, a regular continued
fraction ¢ is a (finite or infinite) fraction of the form
N1
£=bo+ K —,
m=1 b,
i.e., a fraction whose partial numerators a, satisfy a,=1forall k=1, 2, .. , N

(where here, N may be infinite). Therefore, by definition, the partial numera".
tors of an arbitrary regular continued fraction ¢ are all identically 1.

RegularContinuedFraction:Period
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A regular continued fraction ¢ of the form
E=bo+ K i

m=1 bm
is said to be periodic provided its terms eventually repeat from some point
forward, and the minimal number of repeating terms in such a fraction is called
its period. Said differently, if £ = [bg; by, bo, .. ]is a regular continued fraction
and if k is the smallest positive integer for which b, ., = by, for all
m=12,. ,kr=0,1,2, .. ,then¢issaid to be periodic and k is said to be
the period of ¢.
Given the continued fraction ¢ above with nth convergent &, = A, /B, it can be
shown that ¢ is generated by successive recursive composition of the linear
fractional transformation s = s (w), where

Ak—l W+ Ak
SW)= ———
Bk—l W + Bk-

By studying transformations of this form— specifically the fixed points of such
transformations— several key continued fraction convergence results can be
derived. Such techniques can be found throughout the works of Abel, Lane,
Stolz, Pringsheim, Perron, Schwerdtfeger, and Wall.

RegularContinuedFractionReciprocal

Given the regular continued fraction expansion of a real number ¢

N1
§=b0+K—

k=1 bk

(for N possibly o0), the reciprocal continued fraction when bg =0 is

1 N o1

Zop+ K

f k=1 bk+1

and the reciprocal continued fraction for by > 0 is
1 N 1

_K—

& klbey

RegularContinuedFractionSecondThreeConsecutiveConver

gentsApproximationPropertyForPartialQuotientsGreaterTh
anOne
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For any continued fraction ¢
o< 1

¢=K —
k=1 by

with convergents A,/B,, set
1 1

Then bp,» = 2 implies that A,,,.; >5/2V max(,, A,.2) >5/2.

RegularContinuedFractionsOfSquareRootsOfRationals

Let £ > 1 be a rational number and \/? ¢ Z. Then the regular continued frac’
tion expansion of ¢

oS 1
§=b0+K—
k=1 by

is periodic with period v and the periodic part consists of a symmetric initial
sequence followed by the term 2 bg.

For k = 1 the following relations hold:

b(k modv)+1 — bk+1
b, = 2 by
by_k=bkf0rlsk<v—1.

RegularContinuedFraction:StrictVanVleckFraction

Let & be a regular continued fraction of the form

1
b+
2 by+---

where each partial denominator by is an arbitrary complex number and let

wp = [0; by, by, .. , b,] denote the nth convergent of £. Suppose further that

Re (b,) > 0 for all n and that, for 8 < /2 arbitrary, |arg(b,)| < 6. Such a fraction ¢
is said to be a strict Van Vleck fraction with angle 6.

RegularContinuedFractionSumAndProductOfTwoConsecuti
veConvergentsApproximationProperty
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For any continued fraction ¢
o< 1

¢=K —
k=1 by

with convergents A,/B,, set
1 1

=_2 A .
B -5

Then An Ans1 > A + Anpr > Max((An — 1) A2, (Anyg — 1) A2,5) > 4.

An

RegularContinuedFractionsWithldentical Tails

Let £ and 5 be two irrational numbers with regular continued fraction
expansions

<1
f = bo + K —

k=1 b

< 1
n=¢_Coy+ K —_.

k=1 Gy
If and only if there exist integers a, b, ¢, and d with ad — bc =1, then there
exist integers N, M, such that for alln> N

bn = Cnmn.

RegularContinuedFractionThreeConsecutiveConvergentsA
pproximationProperty
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Let
N 1
f=bo+K—
k=1 bk

be a regular continued fraction with b, € Z* and A, /B, the sequence of its
convergents. Then for all n e Z*, either
An 1

E—-—|<
V5 B2

Bn

or
An+1 1

<
Bn+1 \/3 Bﬁ+1

or
An+2 1

< .
Bn+2 \/g Bﬁ 2

RegularContinuedFractionTwoConsecutiveConvergentsApp
roximationProperty

Let
N 1
f=bo+K—
k=1 bk

be a regular continued fraction with b, € Z* and A, /By the sequence of its
convergents. Then for all n € Z*, either
An 1

<
Bnl 2B2

é‘_

or

An+l 1

< P
2 Bn+1

Bn+1

RegularContinuedFraction:VanVleckFraction
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Let ¢ be a regular continued fraction of the form

1
b2+b3+...

where each partial denominator by is an arbitrary complex number and let
w,, =[0; by, by, .. , by] denote the nth convergent of £. Suppose further that
Re (bp) > 0 for all n. Then ¢ is called a Van Vleck fraction.

RegularContinuedFractionWithAveragePartialQuotientGro
wth

Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation

< 1
é=0+K —.
k=1 b

Let k, K, Mg e R* with k> 1 and K = 2. Let the b, fulfill the conditions

M+1
max an = {Kk J
In?(k) M KK <n<In?(k) (M+1) KK"

M+1
max a, = [Kk J
In?(k) (M+1) K" <n<In?(k) (M+1) KK"*

where M e Z* and M > My. Then

1
liminf —In(In(n)) max bj = ——.
n-co N l<j=n In(2)

RegularContinuedFractionWithPartialDenominatorRestricti
onTheoremHirstl

Let {¢n}ne, be a strictly increasing sequence of natural numbers and let a be
chosen so that > ; ¢;,* converges for real positive a. Let A have the property
that

o 0(¢dn — A) 1
L
1 fn 2072

Then the set of all continued fractions

{f :‘f:ﬁi/\bsz/\bke{qsn}}
k=1 by

has Hausdorff dimensions less than or equal to 1/2.
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RegularContinuedFractionWithPartialDenominatorRestricti
onTheoremHirst2

Let {¢n}ne, be a strictly increasing sequence of natural numbers and let a be
chosen so that " ; ¢, diverges for real positive a.

Then the set of all continued fractions

< 1
{§.§=kl§lb—k/\bke{¢n}}

has Hausdorff dimensions less than or equal to a/2.

RegularContinuedFractionWithPartialDenominatorRestricti
onTheoremHirst3

Let {¢n}n2, be a strictly increasing sequence of natural numbers and let « be
chosen so that > ; ¢, diverges for real positive a.

Then the set of all continued fractions
© 1
¢=K = A\ b.efn®l” nez* bzkb}
fe:e=K - Abcelrilz, Anez’ A,

has Hausdorff dimensions less than or equal to b/2.

RegularExpansionUnderSchinzelCondition
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Let A,B,C be integers where B> 0, C> 0,
B% - A?C|=1

and gcd(A?, 2B, C) is squarefree,

d = gcd(A?, 2B, C),

N be a natural number, X be a formal variable,

B
y=—
A
be a rational number,
© 1
n=K —
n=1 a,

be the regular continued fraction of y, k be the length of the continued fraction
,
D(X)=A*X2+2BX+C
be a Schinzel sleeper,
© ]
&= 51 E
be the regular continued fraction of VD(X) , and p be the regular continued
fraction period of £. Given d is squarefree, then
p=1+Kk
and
AnVxsn (0o =AX+a9 A Vi bn=2an Ab1x=2(AX +ap)).

RegulatorOfRealQuadraticFieldUsingContinuedFractions
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Let D be a square-free positive integer and for the regular continued fraction

for VD
S
k=1 b
bpsn = bn
define
Po=0
Q=1
Pns1=bnQn— Py
D-P7,;
Qn
VD +P,
6, = .
Qn
Then the fundamental unit for (VD ) is
% (A1 +VD Bry) if thereisr < [2] Q=4
= { A(p-1)+VD B(p-1) otherwise

Qn+1 =

2 1600 i thereisr <[ 2], Q=4
i=0
Lp/2]
-1 (VD +P(%)) pn 6y if pisodd

i=0

(P2 o
Q(g)(l_w(l)) if piseven.
=0

RegulatorOfRealQuadraticFieldUsingNearestintegerContinu
edFractions
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Let D be a square-free positive integer and for the regular continued fraction

for VD
K

k=1 b
Dpin = bn
define
Po=0
Q=1
Pni1=bnQn—Pn

-2,
Q-

If D#5, D+ 13, and there are x and y so that |x? — y? D| = 4, then there is an
r <|p/2] with Q, =4 and the fundamental unit for Q(\/E) is

Qn+1 =

e=A_1+VD B,_.

ReinerTheorem

Let K be a division ring and let R = K[x be the ring of polynomials in an indeter
minate x with coefficients in K, where it is assumed that x commutes with all
elements of K. For fy, 5, .. , fy €R, define A and B as the formal numerator

and denominators of the continued fraction having terms f; and denote this as
&E=[fy, f5, .., fn] — A/B, where A/B can be defined by the relation

(2 o)l5 o){3 o Ho)=(5)
1 0)l10 1 0)lo) B/
Let f » f* denote any homomorphism of (R, +) into itself, which leaves K

elementwise fixed and satisfies (a f)*=a f* forallae K, f e R. Then
E=[f, fp, .., fn] — A/Band A, Be K implies & =[f}, f5, .., f§] — A/B.

RemarkOnDivergenceOfCertainlFractions
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Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,
limb,=0, and

2

=1

aj—

1
+|bj|]<oo.

Furthermore, A,/B, denote the nth convergence of f, let w € C be an arbitrary
complex number with w = w?, and for notational convenience, let uj = 2 b; for
j=0and letvj=1-4a;for j=1. If x=cos(®), w=e*’ for 0 <d <, then
‘An+1(x) An(x)
Bn+1(x) Bn(x)

for

n
>2|1 +w2K2 ]_[|1 —vj|
=1

K=K(w)=2 (1 + 3 =W pg (0) po (1) +oprp (D)),
r=1

(o)

pcRY= > (|juj] RYZ (1 +RI¥) + |vj| (R + RIK)).
j=k+1

In particular, this shows that for all x € (-1, 1) the continued fraction f(x)
diverges.

RemarkOnGeneralAnalyticContinuedFractionsAndBranchP
oints

Let F(z) be a general analytic limit periodic continued fraction of the form

1
F@)=

A(2) + o (2) - 2,(2)
A(2)+b1 (2)-

2(2)

33(1)
A(@)+hy ()-——

where a, (z) # 0, b,_1(2) and A(z) are holomorphic functions of z in a region
GcCforn=1, and where lim,_a, (z) =1/4, lim,_. by (z) = 0 hold uniformly
on each compact subset of G. If the open set G* is defined so that G* = G\S
where S={zeG : A(z2) e[-1, 1]}, if (2) is defined on each component of G* so
that & (z) = w (A(z)) Where w () =z — (2% - 1)1/2 with roots chosen positive for
z>1,zeC\[-1, 1], and if G** is defined to be the 2-sheeted Riemannian
surface of w(z) over G obtained by analytic extension of @ from each compo™.
nent of G* across S into a second copy of G, then the point z5 € S is a branch
point of @(z) extended onto G** if and only if A (zg) = +1 of odd order.
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RemarkOnGeneratingFunctionsAndJFractionConvergence

Let f(z) be a J-fraction of the form

1
f(2)=

Z+by- —&

a

Z+b1—
z+b27i

where a,, b,eC,a,+#0forn=0, 1, 2, .. , wherelima,=1/4 and limb, =0
hold, and where A, (z)/B, (z) denotes the nth approximant of f. Suppose that

2

=1

aj—l

+|bj|]<oo

and, in addition, let w e C be an arbitrary complex number with w = w? where,
for convenience, the notation uj=2b;for j>0and letvj=1-4a;for j>1is
adopted. For |w| <1, w# 1, |z| < 1, define the function G, (z) to be the generating
function of the sequence S\ (z) for n >k, i.e., Gy (2) = X, ., 2" Si" (2) where

n-k-1
SU@=1-w"e D1 )L G @0 @) 0y @) (L-w)

r=1 keji<jp<-<jr<n

okj (@ =1 -w)(wuj (1 -w™) +wv; (1 - w1,
with ¢ ; (£1) = £(j — k) uj + (j — k= 1) v; by definition. It follows, then, that

Zk+l(1 -w)

Sla)= m 1+ Z Z C,j1 (@) Cjy jp (@) -+ Cj_y (@) 2|,

r=1k<j,<jo<---<jr<n
and hence that:
1. G(2) converges absolutely for jw| <1, w# 1, || = 1.

2. Absolute convergence in Gy(z) also happens provided that
Z‘J?":k+1|ck,j (w) Z!| < o0, a criterion satisfied whenever |z] < 1, |w| < 1, and

Uj, Vj, C j are bounded for j>k=>-1.
3. The function Gy(z) satisfies

Iin;(l—Z) Gy (2) =Sk (@

where

Sc@ =1+ > 0 @), j, @) Gy, (@),

r=1k<ji<jo<---<jr<n

RepresentabilityOfRealNumbersAsSumsOfNumbersWhose
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FractionalPartsContinuedFractionsPartialQuotientsAreNotL
essThan?2

Every real number x can be represented as a sum of two numbers whose
regular continued fractions x = (a; + &1) + (a2 + &2)

© ]
=0+ K —

k=1 by

with2<b, forallkandi=1, 2.

RepresentationTheoremForAleksenkoSpectrum

Let

< 1
é=K —

n=1 b,
be a regular continued fraction with convergents A,/B,, f, be a sequence

Afn) 1
where ‘ - < =,
f Bfm) 2 B%m)

Qn = Bf(n)-

u(a)(t) be a Minkowski diagonal function,
m(a) = limsup t u(a)(t),

t->o0

a, be the complete quotients of &,

(a,)" = from the continued fraction [0; b,, .. , bq],

=2
¢

be its regular continued fraction, «;* be the complete quotient continued
fraction of ¢71,

(1-xYy)>
41-xA-yyxy+1

F(x, y) =

1
G(x, y)=Z(X+ y+1)

6oy, a7%) 3 (Qu Quand = (B 1y, Bryy)
F (a§+11 a’;-&z) 3V {Qn! Q1+n} = {va Bl+v}

and then define

mp(@) = {

i(@) =liminf my(a)

N—-oo
I={m:3i(@)=m.
Then 3, [1/4, wol c I.
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RepresentationTheoremForMinkowskiSpectrum
Let

< 1
¢=K —
n=1 a,
be a regular continued fraction with convergents A,/B,, f, be a sequence

1

Af(n)
2 1
2B,

where ‘f -

Bt
Qn = Bf(n)a
u(a)(t) be a Minkowski diagonal function set,
m(a) = limsup t u(a)(t), and

t-oo

define M to be real numbers m where
3 m(@) =m.

Then M c[1/4, 1/2] and {1/4, 1/2} € M.

RestrictedDenominatorContinuedFractions

Let Fy be the set of all infinite regular continued fractions with partial denomina’
tors between 1 and k.

< 1
Fk={§if=1<lb—/\bjeZ+/\15bjsk}.
= i

Let Py be the closed interval

co 1 co 1
p.=|K , .
jl{k forjmod2=1 jl{l forjmod2=1

1 forjmod2=0 k forjmod2=0

Let O, be the set

o= J|K . , K :
moy [t (b forl<j=m =1 (b forl<j<m
k for(j—-m)ymod2=1 1 for(j—-m)ymod2=1
1 for(j—-m)ymod2=0 k for(j-mymod2=0 |

where bje Z* and 1 <bj <k and by, # m. Then F is the following set-theoretic
difference: F, = P \Oy.
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ReversePeriodicRegularContinuedFraction

Let £ > 1 be an irrational solution of a quadratic equation with rational coeffi
cients of the form

P+vVD
§=

Q
with p, Q, DeZwithP=0, D >0, and Q> 0, and Q (D - P?). Let the regular
continued fraction expansion of ¢ be purely periodic

° 1
§=bo+K .

k=1 bk mod m

If the conjugate of £ is
P-VD
Q

then the following expansion holds:

n

RichardsFareyProcessApproximationTheorem

Given any irrational number £ with 0 < £ < 1, the Farey process (zeroed in on
£) gives a sequence of best left and best right approximations to £. Further™.
more, every best left/right approximation arises in this way.

RichardsFareyProcessRealNumberTheorem

Every rational number p/q in lowest terms with 0 < p/q < 1 appears at some
stage of the Farey process.

RichardsFastContinuedFractionAlgorithmTheorem

Given any irrational number & with 0 < ¢ < 1, the fast continued fraction
algorihtm gives precisely the set of ultra-close approximations to ¢&.
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RogersRamanujanContinuedFractionConvergenceAtRootsO
fUnity

Let 7 be a complex number, define the modular nome by

q — €2i7r‘r,

let r(r) be the Rogers Ramanujan continued fraction of g, and x=a/b be a
rational number. Then r(r) converges < bmod5 # 0 and

a a(ezmab/s r(O))5/b
bmod5¢0=>r(g)= "

RogersRamanujanContinuedFractionExpressibleAsRadicals

Let 7 be a complex number, define the modular nome by

q= eziﬂ'T1

let r(r) be the Rogers Ramanujan continued fraction of g,

™=

the Klein invariant J, and f(r) be the dehomogenized icosahedral equation.

Then j(7) is expressible as radicals A f(7) is reducible < r(7) is expressible as
radicals.

ScaledApproximationCoefficientsLimit

Let 0 < ¢ <1 be an irrational number with regular continued fraction
representation

< 1
é=0+K —
k=1 by
be a continued fraction and A, /By the sequence of its convergents.
Then the following identity hold for almost all ¢:
An 2

Vs
Bn

1
lim—In
naoon

o 6In(2)’

SchmidtExpansionConsecutiveConvergents
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Let & be a complex number with Im(¢) = 0 with Schmidt expansion
£=My-My-.. -My and convergents {A” /B, A(D /B, AT /B()).

Then for all AD /BP, 1€1{0, 1, oo}, if P1(7)(&, 1, 1)) € C the following holds:
‘An+1

> |AYand [, | = [BY.

SchmidtExpansionConvergents

Let £ be a complex number with Im(¢) = 0 with Schmidt expansion convergents
(A9 /B0 AD /B, Al /B()}. Then for almost all A /BY, 1€ {0, 1, oo}, the
following hold:

o niep)
an n -

1 [ Aﬂ)] 2C
lim—|ln¢é- —|=—-——.
N—co ng i3

SchmidtExpansionMultipleConvergents

Let & be a complex number with Im(¢) = 0 with Schmidt expansion
£=My-My-.. -My and convergents {p{ /a{, pi” /a5, p /qi>}. Then for all
pP/ay, 1€ 10, 1, oo}, the following holds:

If Mj & {Vs, Ep, Eg):

(P =p5" \/ Pt =ip6 ) A\ (a2 =05 \/ g =ia5”);

If M & {V2, Es, Eq):

(P = \/ pa=ip®) A\ (dra =02 \/ dth=iaf).

|fM€{V3 El E2}

(P =P \/ pii=ip®) /\ (a =0 \/ af=ia”).

ScottWallCaseOfLeightonConjecture
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Let ¢ be a C-fraction,
o an z%
=K —,
n=1 1
m be a natural number, D be the unit disk, and B be the domain boundary set
of D. Then given

a,=a
a,=m"
it follows that & converges in D to a meromorphic function and that B is the
natural meromorphic boundary.

SeidelEquivalenceTheorem

Let
> ai(n)
1 =
n=1 by(n)
be a generalized continued fraction,
> az(n)
2 =
n=1 by(n)
be a generalized continued fraction, and r, be an equivalence transformation.
Then

3y, (ro=1Ary#0Abi(n)=r,ba(n) Aay(n) =rn_1 ryax(n)) &
&and n are equivalent.

SeidelMultiplicationTheorem
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Let

N ay
f = bo + K —
k=1 by
be a continued fraction with convergents p,/qy. Let p, be a sequence with

ok # 0 for all k and let

N
Pk-1 Pk A
n=pobo+ K ———

k=1 py by
be a continued fraction with convergents P, /Q,. Then the following identities
hold:
n=poé

k
Py =.00><[1—[ij>< Pk

=1

- [T

=1

SeidelSternTheorem

A positive continued fraction ¢ = K 1/by converges if and only if 3’ by = co. If
n=1

> bn < o0, then & diverges generally.

SeidelSternTheoremTransformed

A positive continued fraction & = K a,/b, converges if and only if its Stern-
n=1

K+n+.
Stolz series diverges to co, i.e., if and only if ¥, b, TP, al Y = 0

SemiUnigueRegularChainRepresentationsOfCertainComple
XNumbers

For any complex number ¢ € C\Q(Z) which is properly equivalent to some real
number r € R, there exist precisely two regular chains ¢ h; &£ and ¢ h, £ represent’

ing &.



SeriesToContinuedFraction

Let ¢, # O for all integer k= 0 and
N

f = ch.
k=0

Then the continued fraction

C1 fork=1
—CZ—kl fork>1

=co+ K -
=" k=1 (1 fork=1
1+ fork>1

Ck-1

has the property that for all integer m = 0 the following identities hold:

C1 fork=1
m m —% fork>1
:E::Ck =Co+ ];: 1 fork — ]-.
s k=1 ork=
1+ % fork>1
Ck-1

ShiftTransformation
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The unmodified term “Shift transformation”’refers to the mapping of a regular
continued fraction & = [bg; by, by, ... ] to the translated regular continued
fraction & = [by; by, b3, .. ]. This idea can be generalized to the n-fold composi™.
tion of the above transformation which takes ¢ to the regular continued fraction
&n = [bn; bnet, bnso, .. 1. Restricted to numbers x in the interval (0, 1) with
corresponding regular continued fractions & (x) = [0; by, by, .. ], the shift trans™.
formation T is defined so that T : [0; by, by, ... ] [0; by, bs, .. ] and is given by
the closed-form expression

1 1
TX)=—-— {—J

X Lx
The map T is studied by way of measure theory and functional analysis, for
example, and in addition to the fact that Gauss >measure is invariant with
respect to it, T can also be shown to be ergodic and indecomposable with
respect to Lebesgue measure. Results of this variety can be found in Billingsley,
among others.

In general, however, there are a number of differing shift transformations
which are also studied from a variety of different contexts. For example,
Schmidt proved that analogous theorems to the above hold for the analogously-
defined shift transformation = for regular chain and dually regular chain repre™.
sentations of a complex number z € C. Various other, more specialized types of
shift transformations exist as well, for example the g-shift and (a, b)-shift
transformations.

SleszynskiPringsheimContinuedFractionValueSet

For every complex number f from the unit disk (|f| < 1) with the exception
f =0, there exists a Sleszynski-Pringsheim continued fraction
N
a
f = bo + K —k
k=1 by

such that & = f.

SleszynskiPringsheimTheorem

Let

> a
§=bo+K—k
k=1 by

be a Sleszynski-Pringsheim continued fraction. Then & converges absolutely to
some value f with 0 <|f| < 1.
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SpecialRelativityVelocityAdditionsContinuedFraction

Let k be a nonsquare integer, k > 5. Let X € Q, Xo > 0. Define the sequence x,

through
Xp+1

Xn+1 = .

1+Xx,/k
Let

< 1
=K

j=1 b;

be the regular continued fraction expansion with convergents p,/q,. Then
there are at most finitely many solutions of the equation x, = py/x-

A closed form for x, is given by

0 (ol KR R e

[ (] (W_x0)+[ f) (VK + %)

Xn =

]n (VK + xo)]

SquareProductConjecture

Given sequences {ay}y’ ; = (a2}, and {by ) ; = {b (@)}, of complex-valued
functions analytic on domains ¥ and (, respectively, for which the infinite
continued fraction K(ak/bk) converges in C | {oo},
k=1
14 ) aj 2 o ay -1 ay 2
kel j=k bj k=1 by, k=1 by
Here, B,_; refers the terms of the three-term recurrence relation

Bm =bm Bm-1 + am Bm-2,

B_; =0, By =1, satisfied by the finite convergents of K(ak/bk).
k=1

StablePolynomialCriteria
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Let the complex polynomial of degree n
n-1
pn(z) =Zn+ Zak Zk

k=0
be stable (meaning for all roots z, it holds that Re(z,) < 0).

The polynomial p,(2) is stable if and only if

n/2

n/2 .
( > Re(an-ken) 274 k+l)) +1 ( 2 Im(an_ i) 2" k)]
k=0 k=1

(n2 ] n/2 .
2"+ |( ¥ Im(an_ke1)) 274 k”)) + ( Y Re(an_ax) 2" k))
k=0 k=1

th(2) =

can be written in the form

t,2) = K

k=1 it +dygz

where t,eR and d, >0 forall 1<k =<n.

StarDiscrepancyBoundsForFunctionsOfBoundedVariation

For a function f: [0, 1] - R with bounded variation V(f),

1N 1
‘—Zf(xn)—f f(t) dt
N 3 0

=Dy V().

StarDiscrepancyOfARealSequence

Let Ec [0, 1, w = {xn}\_; a sequence of real numbers and define A(E; N; w) so
that

A(E;N;w)=t({n : 1=<n=<Nandfrac(x,) € E},

where & A denotes the number of elements of A for all sets A and frac(y)
denotes the fractional part of the element y for all y.

Given a sequence {xn}rﬁ‘=1 of real numbers with fractional parts

frac(xy), frac(xy), .. , frac(xy) ordered increasingly by magnitude, the star
discrepancy Dy, associated with the sequence is defined to be

g |

N — frac(x;)

N — frac(x;)

Dy = max max
i=12,. N

SternStolzTheorem
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be a regular continued fraction with b, € C and A, /B, the sequence of its
convergents. Then if >} 4 |by| < oo,

1. the continued fraction & diverges generally.

2. the sequences {Asnim}n @and {Bzn.:m}n cOnverge absolutely to finite values Ay,
and By, respectively (for m=0, 1).

3. AL By —AyB1=1.

StieltjesMomentProblem
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The Stieltjes moment problem, investigated as part of Stieltjes ”1894 exposition
on continued fractions, seeks to determine necessary and sufficient conditions
for a sequence {m,} of real numbers to be of the form

mnzrxndﬂ(x)
0

for some measure u defined on [0, c. Originating as part of an investigation on
relationships between J-fractions, S-fractions, and infinite series, Stieltjes
himself gave a necessary and sufficient condition for the existence of a solution.
In the decades since, this problem has been extended and analyzed by many
authors, resulting in a variety of conditions for existence and uniqueness of
solutions thereto.

Stieltjes "original condition states that a solution {m,} of the moment problem
exists if and only if the Hankel determinants satisfy

M My - My my maz -+ Mpyy
mpy mz - Mpyg ma msz - Mpy2

. . . o, . . . . >0
My Mpir -0 Map Mpy1 Mpy2 o0 Mapga

foralln=0, 1, 2, .. , though this says nothing about whether the solution is
unique. Several other criteria quantify the uniqueness of solutions to the Stielt’
jes moment problem, e.g. Carleman 3 condition which states that any solution
{my} will be unique provided that

-1
Zm;(z VT = .
n=1

Several other results related to continued fractions can be found in the work of
Alkhiezer, e.g., who proves that precisely one solution {m,} to the Stieltjes
moment problem exists whenever {m,} is defined in terms related to the ele™.
ments of an S-fraction & = £ () of the form

1
E=ag+
b]_Z+

1
by z+--

a;+
and at least one of the series >}, a, >y, by diverges, ap =0, &, b, € Z*,
k=1, 2, 3, .. . Additional results concerning the Stieltjes moment problem can

be found in the works of Bultheel et al. and van Assche, among others.

StieltjesRogersTheorem
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Let ¢(z) =1 + 3721 #n(2) 2" /n! be an exponential generating function satisfying a

Stieltjes-Rogers addition formula with coefficients w,. Let

O(z) =1+ Y2, 6n(2) 2" be the generating function corresponding to ¢(z). Then

> 1-zc

o2 = K .
n=1 22 dn

where

th=¢(, j+ D@ -¢(j-1, D@

is a formal power series,
Wﬂ

dy =

Wn_1
is a real number, and

o(j, K)(2) =k! 2 0(j)(2).

StrongBestRational Approximation

A fraction p/q is called a strong best rational approximation of the real number
gif

g&—pl<is&—r]

for any integers r and s such that s<qand p/q#r/s.

Every strong best rational approximation p/q is also a best approximation of £.

Let £ have the regular continued fraction expansion

(for M possibly o) with convergents A,/B,.
Then every convergent A, /B, is strong best rational approximation of ¢.

SumOfRegularContinuedFractionPartialDenominators
Let 0 < ¢ <1 be an irrational number with regular continued fraction expansion

< 1
f = bo + K .
k=1 by
Then the following identity holds for almost all ¢:

n 1+0(1)
lim Zbk = nin(n) + 6, max by,
N-co In(2) 1=ksn

where 6, is a (0, 1)-valued random variable.
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SumOfRegularContinuedFractionPartialDenominatorsDiver
gence

Let 0 < ¢ <1 be an irrational number with the regular continued fraction
expansion

f bQ+K—

k=1 b

Then the following identity holds for almost all £ and any 0 <e < 1:

n-eo nIN°(N)

SumOfRegularContinuedFractionPartialDenominatorsLimSu

P

Let 0 < ¢ <1 be an irrational number with the regular continued fraction
expansion

Then the followmg identity holds for almost all &:
lim sup — =—
n-co  d(N) kzl“ In@2)’
where
d(n) = k(n) In*(k(n)) exp(k(n) In*(x(n)))

and

1
k(n) = exp(2 W(E v In(n) ))

SumOfRestrictedDenominatorContinuedFractions



Let F, be the set of all infinite regular continued fractions with partial denomina’

tors between 1 and k:

o 1
Fk:{§:§=1<1b—/\bjEZ+/\13bjSk}.
= j

Then the following identities hold for sums of elements of F:
Fz+F,=Rmod1

F, + F;,=Rmod1

Fo+F,+F,=Rmod1

F, + F3+ F3 =R mod 1.

SzaszContinuedFractionConvergence
Let
e
n=1 1
be a generalized continued fraction,
Xn = |an|
Yn = lan — Re(@p)l

S= Y1 Xn, and t= 377, y,. Given sconverges and t < 2, then & converges.

TauberianTheoremForGrommerFractions

If for some R > 0 a Grommer fraction & converges for all |z| > R, then the power
series P (2) = X5 oCn z7""1 associated with & also converges for all |z| = R.
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TauFractionsHaveBothRepresentationAndApproximationPr

operties
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A continued fraction that represents uniquely all real numbers so that the finite
continued fraction represents the elements of an algebraic number field, and
conversely, every element of the number field is represented by a finite contin™.
ued fraction is said to have the representation property.

A number field is said to have the approximation property if for every
“frrational”’«a,

P 1
- —|<——
Ql k@’

is satisfied by infinitely many rational elements P/Q of the number field and k
is a positive fixed constant.

The algebraic number field generated by ¢ has both the reprsentation and
approximation properties. The elements of this number field have the form
a+b¢

c+d¢

for a, b, ¢, and d integers and ¢, d not both 0. The associated continued frac
tions, known as r-fractions, have the form
&1 &2

|'1¢+ r2¢+

where g1 = 1, rg is any integer, and the other r; are positive integers. The
representation is unique as long as the rule that if r; ¢ + 1 <1, thenri.; = 2 is
observed.

o +

TechnicalLemmaForLimitPeriodicContinuedFractionsl

Let {d,}, {rn} be sequences of positive numbers. Then the inequality
M-1—rp=2dy+ 21,y is satisfied by

1- 1— 2
Z(an-l) fordn=4(4nf_l), 0<pB=<1,n=1
M= :—Q fordnz—zn(i+l,a>l,d>0, -1 (@-1)>2d,
Slril ford,=r", 0<r<1, (1-r?)>18r".,

TechnicalLemmaForLimitPeriodicContinuedFractions2
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If the limit periodic continued fraction £ =K(b,/1) =[0; by, by, .. ]is such that

1 1 _ . - .
‘bn - (_Z)| < Ty foralln=1, 2, .. and if d, satisfies one of the conditions

1-42
Ty forO<pB=<1,n=1
dn = - fora>1,d>0, -1 (@-1)>2d,
M for0<r<1, (1-r?)>18r"1,

then

£ — 9| <,

where £ = [0; by,1, busz, ., buud, G ={0; =7, =3, .. , —; |, and where r,
k terms
satisfies
1-8 1R
2@2n+l) ford, = 4(4n2-1)’ O0=<f=1,n=1
m=13 & ford, = 5, @>1,d>0, (n-1)"(@-1)>2d,
Srn+1

for0d, =r", 0<r<1, (1-r%)>18r"1

TechnicalLemmaForLimitPeriodicContinuedFractions3

Suppose that ¢ =K(b,/1) =[0; by, by, .. ]is a limit periodic continued fraction

for which

1 1 .
b, — (_Z)| < Ta) and suppose that the values d, satisfy one of the

conditions

1-p2
4(4n%-1)

forO<pB<1, n=1

= _d fora>1,d>0, (Nn—1)(@—-1)>2d,

2nn+1
M for0<r<1, (1-r%)>18r",
Then
1
T2 4dny1+2rn

1- 4dn+1

- fm

<
= 1

where f™ =[0; b1, bpso, .. 1 and where

1- 1-p
2(2n€1) fordnzﬁ, 0<p=l n=1
= nl fordn=2:W,a>l.d>0, (n-1)*(@-1)>2dy,
3rn+l

- for0d,=r", 0<r<1, (1-r%)>18r"1
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TechnicalLemmaForMeromorphicExtensionOflFractionsl

Let f(z) be a J-fraction of the form

1
f(2)=

Z+by- —&

a

Z+b1—
z+b27i

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose without loss of general™.
ity that lima, = 1/4, limb, = 0. For notational convenience, let u; and v; be the

related terms defined so that u; =2bj, j>0,andvj=1-4aj, j> 1, with vy =0.
Also, for natural numbers j, n, r, k+ 1 Z* and for complex w € C with w = w?,

define the terms ¢ ; (w), S (w) to be
tkj @ =1 -w " (wuj(1-w™¥) +wvj(1-w™1))for j, k= -1

and

n-k-1
SU@=1-w"* + > 3 G, (@) Gy, (@) -+ Gy () (1= W),

r=1 k<ji<jo<---<jr<n
respectively, where ¢, ; (+1) = +(j — K) uj + (j — k= 1) v; by definition. If
Ch (w), Dy, (w) are terms which satisfy the recursions Cq (w) = D_1 (w) =0,
Ci1(w)=Dg(w)=1-w, and
Chi1 (@) = Cp (W) =W (Cp (w) = Cp_1 (W) + Up w Cpy (w) + VW Cp_g(w), forn=1
Dn+1 (W) = Dy (w) =W (Dpy (w) = Dp_1 (w)) + U w Dy (w) + vy W Dp_1(w), forn=0,

then foralln=1, C, (w) =S§" (w) and for all N> 0, D, (w) = S} (w).

TechnicalLemmaForMeromorphicExtensionOflFractions2

Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— 2

a

z+bi—
z+by——=

where a,, b, eC,a,#0forn=0, 1, 2, .. , and suppose that lima, =1/4,

limb, =0, and

k) aj—-l

Z( + |bj|] < 0.
=1

For an arbitrary complex number w € C, let w = w?, and for natural numbers

n, r, k+1e2Z*, define the terms Ck,j (W), s<k“3 (w) to be

Ckj (W) =(1- W)_1 (w uj (1 - wj‘k) +WV; (1 — Wj—k—l))
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and

n-r
Sf(": (w) = Z O j (@) S(j’}),l (wyforr=1, k=-1, n>k+r,

j=k+1
respectively, where Sy =1 -w"* for n > k = -1 and where
Cj (£1) = =(j —K)uj + (j — k= 1) v; by definition. Under these hypotheses:
1. flw=l,w+x+xl,r=1,k=-1,and n>k+r, then
IS @)| <211 = WI™ o (1) psa (1) xsr1 (1),

where p (R) = 32, ., (|uj| RY? (1 + RI™) + |vj| (R + RI™¥)) for u; = 2bj, j=0, and
vi=1-4aj, j=1, withvg=0.
2. For each k= -1, r = 1, the r-fold series Sy , defined by
Ser@ = > G @)y, (@) €, (@)
k<ji<jz<---<jr<n
converges absolutely and uniformly on compact subsets of |w| <1, w+ + 1, and
satisfies
Sk r(@)] <11 = W™ py (1) prsr (1) - +prar_1 (1)
for lw| <1, w# = 1. Therefore, Sy ; is holomorphic for |w| < 1, is continuous, and

satisfies Sy g (w)=1and, forr=1, § [ (w) = Z‘J?":k+1 Ck,j () Sjr-1 (W).

3. For each k= -1, S, (w) converges uniformly and absolutely on compact
subsets of |w| <1, w # + 1 where

Sc@ =1+ > 0 @), j, @) €y, (@),

r=lk<j;<jo<---<jr<n

Therefore, S, is holomorphic for |w| < 1, is continuous, and satisfies
Sk (W) = 2320 Sk r ().

4, Foreachk=-1,r=0,0<t<1,

lim §7! () =Sy, (@)

and

lim S, (w) = Sy (w)

N—oo
where

n—-k-1
SC@=1-we DL D G @ @) gy @) (LW,

r=1 k<ji<jp<---<jr<n

TechnicalLemmaForMeromorphicExtensionOflFractions3



274

Results.nb

Let f(z) be a J-fraction of the form

1
f(2)=

Z+b0— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,
limb,=0, and

ij[ a;—-1

=1\ 4

+ |bj|]<oo.

Under these hypotheses and for w € C arbitrary, it follows that:
1. For each k= -1, r > O, the r-fold series Sy , defined by
Sr@ = D G @) G (@) (@)

k<ji<jz<---<je<n

converges absolutely and uniformly for |w| < 1 and satisfies
|Sk ()| = ok ka1 - Okar_1 fOr 0] < 1, where

o)

o= (=W u+ (G- k=D y)

j=k+1
uj=2bjfor j=0,andv;=1-4a;for j= 1. Hence, Sy, is continuous for |w| < 1
and satisfies Sy g (w)=1and, forr=1, S, (w) = Z‘}lml Ck,j () Sjr-1 (w). Here,
tkj (@) =1 -w) ™ (wuj(1-w™) +wvj (1 - w1
with ¢ j (1) = £(j - K) uj + (j — k = 1) v; by definition.
2. For each k= -1, S, converges absolutely and uniformly for all |w| < 1 where
Sc@ =1+ > 0 @), j, @) Gy, (@),

r=1lk<j;<jo<--<jr<n

3. For each k= -1, S\ satisfies S{" (+1) = 0 and
lim | 1im S (w)/(1 - (u)]/n =S (+1)
Nn-oo lw—-+1

where for w = w?,

n—-k-1
SC@=1-we DL D G @) @) gy @) (LW,

r=1 k<ji<jp<---<jr<n

TechnicalLemmaForMeromorphicExtensionOflFractions4
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Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,

limb,=0, and

ke aj—-l

Z( + |bj|] < 0.
=1

Furthermore, let w € C be an arbitrary complex number with w = w?. Under
these hypotheses, the following results hold:

1. Forevery k= -1, limy_ Xf(”) (w) = Sk (w) holds uniformly on compact subsets
of lwl=1l, w+=1, whereforn>k=-1

n—-k-1

X" (@)=1+ Z Z Ok j, (@) Cjy.j, (@) =+ Cj,_, j, (@),

r=1 K<ji<jo<---<jr<n
Sc@)=1+) > 0 @)y, @) €y (@),
r=lk<jy<jp<--<jr<n
where ¢, ; (1) = =(j — K) uj + (j — k = 1) v; by definition, and where
Ckj (@)=L -wW) " (wuj (1 -w™) +wvj (1 -wi ).
2. If in addition to the conditions in (1.) above ¥, j(|aj — 1 /4] + |bj|) < o, then
X" (w) = Sy (w) uniformly on jw| <1 as N - co.
3. For fixed k= -1, S{" (w) = Sy () ~W" ¥ S @)+ O (1) on Jw| =1 as n - oo
whenever the conditions in (2.) are met. Here,
n—k-1

SU@=1-w"r DL )L G @0 @) 0y @) (L-w)

r=1 Kk<ji<jp<-<jr<n
4. For fixed k = —1 and for each w satisfying |w| =1, w# + 1,
L(w)=Ilimy e S(kn) (w) exists. Moreover, L (w) =S, (w) if and only if S, (w) = 0.

TechnicalLemmaForMeromorphicExtensionOfJFractions5
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Let f(z) be a J-fraction of the form

1
f(2)=

zZ +-bo - &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,
limb,=0, and

2

=1

aj—

1 .
+|bj|] Rl <

for some R > 1. Furthermore, let w € C be an arbitrary complex number with
w = w? and for notational convenience, let uj=2b;jfor j=0 and let

vj=1-4a; for j=1. Then the following results hold:
1. For each k= -1 and r > 0, Sy, converges absolutely and uniformly, and for
lw| < RY? satisfies
[Skr(@)] = R=1)™" i (R) s (R) -+ Prar—1 (R)-
Here,
Ser@ = > G @)y j, (@) €y, (@),
k<ji<jp<-+-<jr<n
Ckj (@) =1 =W (wuj (1 -w™) + wvj (1 -wi™ 1)
with ¢, j (1) = £(j — K) uj + (j — k = 1) vj by definition, and

00

PRy =Y (|uj R¥2 (1 +RI¥) + v (R + RIT)).
j=k+1

In particular, for all k= -1 and r > 0, S, is holomorphic for |w| < R, is continu’
ous for |w| < R*2, and satisfies Sy o (w) =1 and, for r>1,
Skr (@) = 2241 Ok j (@) Sjr1 (@) for |w] < RY/2.
2. For each k= -1, the function S, (w) defined by
Sc@ =1+ > 0 @), j, @) €y, (@)
r=lk<ji<jo<---<jr<n

converges absolutely and uniformly for |w| < RY2. In particular, for all k = -1, S,
is holomorphic for |w| < RY2, is continuous for |w| < RY2, and satisfies
Sk (W) = 3224 Sk r (w) for |w| < RY2.

TechnicalLemmaForMeromorphicExtensionOflFractions6
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Let f(z) be a J-fraction of the form

1
f(2)=

Z+b0— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , and suppose that ima, =1/4,
lim b, = 0. Furthermore, let w e C be an arbitrary complex number with w = ?
and for notational convenience, let uj=2b; for j=0and let v;=1 -4 a; for

j=1. Let C, D be functions defined such that C (w) = Sg (w), D =S_; (w) for

Sc@=1+>" > Gy @Ch;, @) Gy @),

r=1k<ji<jp<---<jr<n
Ok j (@=L -W) " (wuj (1 -w™) +wvj (1 -wi 1)),
with ¢, j (1) = £(j — K) uj + (j — k = 1) v; by definition. Further, define
Ch (w), Dy, (w) to be the functions which satisfy the recursions
Co(w)=D_1(w)=0,Cy(w)=Dp(w)=1-w,
Chi1 (W) = Cp (w) =W (Cp (w) = Cp_1 (W) + Up w Cp (w) + Va W C_g (w), N=1,
Dn+1 (w) = Dy (w) =W (Dp (w) = Dp-1 (W) + Uy w Dy (w) + Vo WDp_1 (w), N2 0.
Under these hypotheses and for every k > 1, the identity

k
C () Dy (@) — D (w) Cy (w) = Sy (w) WK (1 —w) ﬂ(l -vj)
j=1

holds under the following conditions:
1. For |w| < RY? if

=1

aj—

1 )
+ |bj|] R! < o

for some R > 1.

2.Forjw|<l, w++1if
j=1[
3.For|wl=<1if

00

i(laj —1/4] + oj]) < eo.

aj—
4

1
+|bj|]<oo.

=1

In each of the above cases, the functions C(w), D(w) have no common zeros.

TexanTheorem
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Let & be the positive number 0 < ¢ < 1 with regular continued fraction expansion
© 1

(=K~
I=1 b

with a; € A where A is a finite subset of positive integers. Let D (A) be the

Hausdorff dimension of all & for a given set A. Let D be the set of all possible
values of D(A) for all possible A. Then the Texan theorem (originally a conjec
ture but subsequently proven) states that D is a dense subset of [0, 1].

TheoremForConvergentSubsequenceForPadeTableRowsOf
FunctionsWithFinitePoles

Let f be a meromorphic function, and D(m) be the largest complex disk where f
has less than or equal to m poles. Let Ty, be the m th row Padé approximants,
R be the radius of D(m), a be an element of C - 0, V,, be the poles of f in

D(m), and K any compact set in D(m) disjoint from V,,. Then R, = oo and there
is a subsequence p; such that for any K, T, ,, converges uniformly on K.

TheoremForConvergentSubsequenceOfBoundedRowsOfPa
deTableForEntireFunctions

Let f be an entire function set, and A be the order of f. Let T, be the m th

row Padé approximants, and K be any compact set. Then given
(-=1+m)mA <2, there is a subsequence p; such that for any K, T, ,, converges

uniformly on K.

TheoremForMeromorphicExtensionOfGeneralAnalyticFract
lonsl

Let F(z) be a general analytic limit periodic continued fraction of the form
1
F(2)=
A(2) + b (2) - ML
A@)+b; (@)-—

L@+, - 22

where a,, (z) # 0, b,_1(2) and A(z) are holomorphic functions of z in a region
GcCforn=1, and where lim,_a, (2) =1/4, lim,_b, (z) = 0 hold uniformly
on each compact subset of G. Assume further that the partial quotients of F
satisfv



s

INgk

2125 @ = 1/4+]bj@)) < o0

1
=

uniformly on compact subsets of G, that G* is defined so that G* = G\S where
S={zeG: A(2) e[-1, 1]}, and that the region () + Gy c G* is such that
A(GoU(GoNS))cY

where Gy denotes the closure of Gy in C and where Y =C* JUorY =C*JL
for C* =C\[-1, 1] and for U, respectively L, defined to be the upper, respec".
tively lower, boundary of the cut [-1, 1] of C* considered as disjoint subsets of
C* where C* is defined to be the complete 2-sheeted Riemannian surface
obtained by analytic extension of w from C* across [-1, 1] into a second copy of
C*. Under this construction, the following claims hold:

1. Let A(2) =20 (2)C(z, & (2)), B(2) =D (z, & (2)) be functions defined in terms
of C(z, w)=C (w) =Sg (w), D (z, w) =D (w) = S_1 (w), where

Sk (wy=1+ Z Z Ck,jl (w) Ciy. i (w) --- Cirvir (w),
r=lk<ji<jp<-<je<n

O (@) =1 - W)™ (wuj (1 - W)+ wy; (1 -wi)

with ¢ j (1) = £(j = K)u; + (j — k= 1) vj by definition. Then:

(2) The series for A(z) and B(z) converge uniformly and absolutely on compact
subsets of Go U (Go 1 S).

(b) The functions A(z), B (z) are holomorphic on Gy and can be extended
continuously onto Gg U (G_o N S) where the extensions have no common zeros

there.
(c) If B#0 on G, then F converges uniformly on compact subsets of
Go\{z€Go: B(z) = 0} to A@)/B(2).

(d) If B(2) =0 on G, then A (z) 0 on G, and so F(z) diverges to co on Go.

2. For each fixed ze S=A1"1[-1, 1] with A (z) # =1, the continued fraction
representation of F(z) diverges. More precisely, if & = ¢'?® for ¢ (z) # k7 a real
number, ke Z, and if

M, () =2(0C(z, &) -¢ o™ C(z, &) (D &) -¢D(z, dfl))_l

denotes a Mddus transform in £, then the nth approximant of F at z equals

M, ("2 ?@) + O(1) as n - co. Thus, for fixed z, the nth approximant of

A (2)/B (z) of F lie on the image of the unit circle under M, () which is a straight
line if and only if |D(z, ¢'?@)| = D(z, e7?@)|.

3. If additionally 2, j(|a; (2) — 1/4| + [bj(2)|) < eo uniformly on each compact

subset of G and if Go is a subset of Zwhere Z=CUJU U {-1, 1} or
Z=CULU{- }, then the result of (a.) above holds for Gg. Moreover, for
eachzeS W|th A(z) =+1,F(2)=+2C(z,+1)/D(z, 1) where C(z, +1),
D(+1, z) do not vanish simultaneously.

Results.nb
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TheoremForMeromorphicExtensionOfGeneral AnalyticFract
lons2

Let F(z) be a general analytic limit periodic continued fraction of the form
1

F@)=

A(2) +bo (2) - 2(2)
A(2)+by (2)—

2(2)

33(13
A(@)+hy (0)-——

where a, (z) # 0, b,_1(2) and A(z) are holomorphic functions of z in a region
GcCforn=1, and where lim,_a, (z) =1/4, lim,_. by (z) = 0 hold uniformly
on each compact subset of G. Assume further that the partial quotients of F
satisfy

D (laj@-1/4]+|bj@|) R < o

=1
uniformly on compact subsets of G for some R > 1, that G* = G\S where
S={zeG : A(2) e[-1, 1]}, and that G} is a fixed component of G*. Next, define
®(z) on each component of G* so that w (z) = w (A(z)) where

w@=z-(2- 1)1/2 with roots chosen positive for z> 1, ze C\[-1, 1], and let

G** be defined to be the 2-sheeted Riemannian surface of @(z) over G obtained
by analytic extension of @ from each component of G* across S into a second
copy of G with G§* the smallest subregion of G** with G§ c G§* such that no
point in Gy* lies above S(R) but that the boundary dg Gy* = 0Gy* () G** of G lies
above S(R). Here, for R> 1, S(R) = A1 (E(R)) c G where E(R) denotes the ellipse

1
ER) = {z eC: (Re@/(RY2 + R™¥2)? + (Im@) /(RY? - RY2))* = Z}'

From this, the following hold:
1. Let A(2) =26 (2)C(z, &(2)), B(2)=D(z, & (2)) be functions defined in terms
of C(z, w)=C (w) =Sg (w), D (z, w) =D (w) = S_1 (w), where
@=L+ D ey @) @)y j (@),
r=1k<ji<jo<---<jr<n
ok j (@) =1 -w(wuj(1-w™) +wyj (1 - w1
with ¢ j (+1) = +(j - K) uj + (J — k= 1) v by definition. Then:

() The explicit series representations for A B converge absolutely and uni’
formly on compact subsets of Gy* U g G§'

(b) A and B can be extended analytically from Gg across S into Gg .

(c) A and B and can be extended continuously onto Gy U 0r GG and the exten’
sions have no zeros there.
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2. The branch points of w(z) are the algebraic first order branch points for the
extended meromorphic function F (z) = A(z)/B (z) proved B # 0 on Gj,.

3. At each zg € S with A (zg) = =1 of even order, A and B consist of two separate
holomorphic branches in a neighborhood around z,.
4. If additionally

(|aj @ -1/4]+|bj@|) R} < o
=1

—

uniformly on compact subsets of G for all R > 1, then for each component of G*,
A and B can be extended analytically across S into the whole Riemannian

surface G**. Moreover, if B £ 0, then the extended F = A/B is meromorphic on
G*.

TheoremForMeromorphicExtensionOfGeneral AnalyticFract
lons3
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Let F(z) be a general analytic limit periodic continued fraction of the form
1

F@)=

A(2) +bo(2) - )
A(2)+by (2)—

a(2)
a3
A@)+by (D-——

where a, (z) # 0, b,_1(z) and A(z) are holomorphic functions of z in a region
GcCforn=1, and where lim,_a, (z) =1/4, lim,_. by (z) = 0 hold uniformly
on each compact subset of G. Assume further that the partial quotients of F
satisfy

22 @-1/4]+ @) < oo
j=1
uniformly on compact subsets of G, define G* = G\S where
S={zeG : A(2) e[-1, 1]}, and define the transformation &(z) on each compo*
nent of G* so that & (2) = w (A(2)) where w (2) =z — (2% - 1)1/2
positive for z> 1, ze C\[-1, 1], and let G** be defined to be the 2-sheeted
Riemannian surface of &(z) over G obtained by analytic extension of @ from
each component of G* across S into a second copy of G. Finally, let G; be a
fixed component of G*, G;* a subregion of G**, and H;* c G** so that
Gi € Gj * c Hy* ¢ G™, and suppose that

(|laj@ —1/4] + |bj(@)]) 10(2)] < oo
=1

with roots chosen

uniformly on compact subsets of H;* where & is assumed to have been

extended analytically onto G* with |@(z)| < 1 for z e G* and with & (z) # =1 for
z € H7*. Under these hypotheses, the following results hold:

1. The explicit series representations for A(z) and B(z) converge absolutely and
uniformly on compact subsets of H3*.

2. A and B can be extended analytically from G; across S into G;*.

3. Aand B can be extended continuously onto H; and the extensions have no
common zeros there.

For the above, A (2) =2 & (2)C (z, & (2)), B (z) = D (z, & (2)) are functions defined
in terms of C (z, w) = C (w) = Sp (w), D (z, w) = D (w) = S_1 (w), Where
Sk (w) =1+ Z Z Ck,jl (w) leij (a)) cen er—lxjr (w),
r=lk<ji<jz<--<jr<n
Cj (@)=L =wW)™ (wuy (1-w™) + wy; (1 -w™)

with ¢ j (+1) = +(j — K) uj + (j — k= 1) v; by definition.

TheoremForMeromorphicExtensionOfiFractionsl
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Let T(Z) be a J-Traction Or the Torm

1
f(2)=

Z+bo— 2

a

a
3
Z+by——

z+bi—

where a,, b, eC,a,#0forn=0, 1, 2, .. , and suppose that lima, =1/4,
limb,=0, and

2

=1

aj—

1
+|bj|]<oo.

Furthermore, let w € C be an arbitrary complex number with w = w? and for
notational convenience, let u;=2b;jfor j=0and letvij=1-4a; for j=1.

Finally, define the functions C(w), D(w) to be C (w) = Sg (w), D =S_; (w) for

Sc@) =1+ > 0 @), j, @) €y (@),

r=1Kk<js<jp<-<jr<n

tkj @) =1 -w) ! (wuj(1-w™) +wvj (1 - w1,

with ¢ j (+1) = +(j — K) uj + (j — k= 1) v; by definition. With these assumptions,
the following claims hold:

1. Define the functions A*, A, B*, B~ as follows: A*(x)=2¢"C(e™*?),
A~(x)=2¢""C(e'?), B*(x) = D(e™*”), and B~(x) = D(¢'’). Then A*, A~, B*, B~
are continuous on (-1, 1) and for every x = cos(d), ¢ € (0, n), they satisfy

(1-vj)=4ising [ [(1-vj)=0.
j=1

e

A” () B () - A* () B~ () =4i (1 - x2)"

Il
i

If additionally all a,, b, in f(z) are real numbers, then A~ (x) = A*(x) # 0 and
B~ (x)=B*(x) £ 0 for all xe (-1, 1).
2. ForAeC*=C\[-1, 1], let w(A) denote the transformation

1
o) =2 (A+D)M2 - @ - 1)H2)?

with roots assumed to be positive for A > 1 and define functions A, B so that
A)=2w@)C(w@)),

B (1) =D (w(d)).

Defined in this way:

(a) The functions A, B £ 0 are holomorphic on C* | {0} and can thus be
extended continuously onto C*|J U | L where U, respectively L, denotes the
upper, respectively lower, boundary of the cut [-1, 1] of C* considered as
disjoint subsets of C** where C** is defined to be the complete 2-sheeted Rieman’
nian surface obtained by analytic extension of w from C* across [-1, 1] into a
second copy of C*. In particular then, A(A) and B(A) approach continuous
boundary values of A* (1), B* (1), respectively A (1), B~ (1) if A € C* approaches
x € U, respectively x € L.
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(b) A and B do not vanish simultaneously on C* |J U U L.
(c) The function f(A) defined to be
f ()= lim Ay (1)/Bn (1)

N-co
for A,/By the nth approximant of f(z) satisfies f (1) = A(1)/B (2) uniformly on
compact subsets of C*\{A € C* : B(1) =0}.

3. For x=cos ¢, ¢ € (0, ), the continued fraction f(x) diverges. More precisely,
An (X)/Bn(X) = M(e™2™D %) + O(1) holds uniformly on compact subsets of

(-1, 1) as n - co Where

M) = (A" () -{ A (0)/(B* (O -{B ()

is a Mdus transformation. Thus, for fixed x € (-1, 1), all A, (X)/Bn (X) lie
asymptotically on the image of the unit circle under M(¢) which is a straight
line if and only if |B*(x)| = |B~(x)|.

4.1f 321 j(Jaj — 1/4| + |bj|) < e holds, then so does (1.) above. Moreover, A and
B can be extended continuously from C*(J U UL into +1 and

AQ),BQA)-> A(x1),B(xl)asreC"JUUL- +1where by definition
A(x1)=+2C(x1), B(x1) =D (x1). Moreover, neither A(1), B (1) nor

A (-1), B(-1) vanish simultaneously and

limA,(x1)/B, (1) =A(x1)/B(x1).

n—oo

TheoremForMeromorphicExtensionOflFractions2

Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— 4

a

z+by— -
Z+by——

where a,, b,eC,a,+#0forn=0, 1, 2, .. , and suppose that lima, =1/4,
limb, =0, and

2

=1

aj—

1 .
+|bj|] Rl <

for some R > 1. Furthermore, let w € C be an arbitrary complex number with
w = w? and for notational convenience, let uj=2b;jfor j=0and let

vj=1-4a; for j=1. Moreover, suppose the functions C(w), D(w) are defined to
be C (w) =Sp (w), D=S_1 (w) for
Sc@ =1+ > 0 @), j, @) Gy, (@),
r=lk<ji<jo<---<jr<n
Okj (@=L -W " (wuj (1 -w™) +wvj (1 -wiT)),

with ¢, ; (1) = £(j — K) uj + (j — k = 1) v; by definition, and suppose

Y —0F —M\T_1 11 .2\ Adanntac tha trancfarmatinn



A = —\L_,\LfL, J.J W\IL/ UCIIULUO LHIU LTUdnioiviininiauvi il
1 1/2 1/2\2
w(A):E((/\+1) -A-1"?)

with roots assumed to be positive for A > 1. Under this construction, define the
functions A, B so that

AN =2w @) C(w@)),
B (A) =D (w(A)).
Then:

1. If U, respectively L, denotes the upper, respectively lower, boundary of the
cut [-1, 1] of C* considered as disjoint subsets of C**, if C** is defined to be the
complete 2-sheeted Riemannian surface obtained by analytic extension of w
from C* across [-1, 1] into a second copy of C*, and if E (R) = {lw(z)| = R'/?} is
the ellipse with explicit form

1
E(R) = {z eC : (Re@/(RY2 + R™¥2))? + (Im@@) /(RY? - RY2))* = _}.

4
then:

(a) The functions A and B can be extended analytically from C* across U and L
onto a subregion |w(1)| < RY? of the region C** whose boundary |w(1)| = RY? on
C* lies above the ellipse E(R).

(b) Onto the boundary |w(1)| = RY2, A and B can be extended continuously.
(c) The foci z =+ 1 of the ellipse E(R) are first order algebraic branched points
for fA)=AQ)/BQ).

(d) A and B have no common zeros in the extension |w(1)| < RY?.

2. If A, B denote the functions resulting from extending A, B from A € C* across
U or L into the point in C** lying above A. Then

AMBW-AWBW=4(2-1)" ]_[(1 -vj)
=1
for all A e C* satisfying R™2 < [w(1)| < RY2, where the roots of (1% - 1)1/2 are
assumed positive for A > 1.
3. If

2

i=1

aj—

1 .
+|b,-|] RI <o

holds for all R> 1, then A and B can be extended analytically to functions A, B
defined on the complete surface C** in such a way that these extensions satisfy

AWBW-AMBM=4(*-1)"]](1-v)
j=1

for all A € C. In this case, f(z) is meromorphic on C**.
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TheoremForMeromorphicExtensionOfiFractions3

Let f(z) be a J-fraction of the form
1

f(2)=
Z+by- —&

a,
Z+b1—
z+b27i

where a,, b,eC,a,+#0forn=0, 1, 2, .. , wherelima,=1/4 and limb, =0
hold, and where A, (2)/By, (z) denotes the nth approximant of f. Suppose, too,
that a,,, b, satisfy

i(laj—1/4] +bj]) < 0

=1

—

and that D (w) £ 0 for all |w| <1 where D =S_; (w) for

Sk (@) =1+ Z Z Ck,jy (@) Cjy,jp (@) -+ Cjy j, (@),

r=1lk<j;<jo<---<jr<n
tkj @) =1 -w) " (wuj(1-w™) +wvj (1 - w1,
with ¢ j (1) = +(j - k) uj + (J — k= 1) v; by definition. If #(x) denotes the
function
P(X) = 2 (1- xz)l/2 ﬁ(l -vj)/B*(x) B™(x)
T

j=1

for x e [-1, 1] with all roots nonnegative, then:
1. ¢(x) is continuous for all x € [-1, 1].
2.6(x)#0forall xe (-1, 1) and ¢(+x1)=0.

3. ForallAeC,

1
f(A):f d)A=x)"tdx.
-1
4. If y is a large circle centered at z =0, then

1 1
f Bin(X) Ba(X) 600 dX = —— [ BV Bad) FV dA = 8081 -+ & S
1

L Jy

for m, n = 0 where ¢, j denotes Kronecker 3 delta.

TheoremForMeromorphicExtensionOflFractions4



Results.nb 287

Let f(z) be a J-fraction of the form

1
f(2)=

Z+bo— &4

a

z+bi—
z+by— =

where a,, b,eC,a,#0forn=0, 1, 2, .. , wherelima,=1/4 and limb, =0
hold. Suppose, too, that

2

=1

aj—

1
+|bj|]<oo,

and let w € C be an arbitrary complex number with w = w? where, for conve".
nience, the notation u;=2b; for j=0and letv;=1-4a; for j= 1 is adopted.
Then:

1. For x e (-1, 1), f(d) can be written as

fQ)= fa A=x)"tdy(x)

for A € C\[—a, a], where ¢ is a real-valued nondecreasing function on [-a, a]
normalized so that y (X) = (X + 0) for all x e (—a, a).
2. y(x) is differentiable and satisfies ¢’ (X) = ¢ (x) where

2 o]
¢ =—(1-x3)"?[ (1 -v;)/B* B

b =1
for x e [-1, 1] with all roots nonnegative. Here, B*, B~ are functions defined by
the first substituting x = cos ¢, ¢ € (0, m), and then defining B*(x) = D(e™* "‘) and
B~(x) = D(e'”) where D =S_; (w) for

Sc@ =1+ > G @) T @) ¢, (),
r=1k<ji<jp<---<jr<n

Ckj (@) =L -W) " (wuj (1 -w™) +wvj (1 -wi 1)),

with ¢, j (1) = £(j - K) uj + (j — k = 1) v; by definition.

3. ¥/(X) = ¢(x) is continuous for all x e (-1, 1).

4. If additionally

i(laj=1/4]+ [bj) <o,

=1

then (1 - xz)l/2 ¢ (X) is bounded for all -1 < x < 1; equivalently, if x = cos(¢) for
¢ € (0, m), then ¢(cos(?)) sin(¢) is bounded for 0 < < 7.

TheoremForMeromorphicExtensionOfiFractions5

Let f(z) be a J-fraction of the form
1
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f(2)= "
Z+ bo — L =
z+—b2—a—3

z+by—

where a,, b,eC,a,+#0forn=0, 1, 2, .. , where lima,=1/4 and limb, =0
hold, and where A, (2)/By, (z) denotes the nth approximant of f. Suppose, too,
that

=1

aj—
4

+ |bj|] < o0,

let w e C be an arbitrary complex number with w = w? where, for convenience,
the notation u; =2bj for j=0 and let vj=1-4a; for j> 1 is adopted, and

define Q, (\) =By (1) /(ag ay -+ ay)*? where, for each n> 1,

n 1/2
(@ ay +-an?=2" [ﬂ(l—vj)]

=1
ischosenin{zeC: arg(z) e [-n/2, n/2]}. Given this, the following results hold:
1. Define for A € C\[-1, 1] the transformation w(A) to be

w) = % (A +D)Y2 - @ - 1)H2)?

with roots assumed positive for A > 1. Moreover, let

) = {2 C ¢ (Re)/ (R + ROZ)F + imia) (7 - R22)F = =)
and define the function B (A) = D (w(d)) for D=S_; (w),

Sk (w) =1+ Z Z Ck,h ((,L)) Ch’j2 (w) eril'jr (w),
r=1lk<ji<jp<---<jr<n
O j (@=L -w ™ (wuj (1 -w¥) + wy; (1 - wi™ )
with ¢ j (+1) = +(j — k) uj + (j — k — 1) vj by definition. Under this construction,

for fixed te (0, 1),
1/2
+0 (1)

0o

(@)™ Qe ) =27 B (A - 1) []‘[(1 ~v))

j=1

as N - oo. This result holds uniformly for all |w(d)| <t, i.e., uniformly outside the
ellipse E(t2), where (A2 — 1)1/2 is assumed positive for A > 1.

2. If x=cos(® for ¢ € (0, n) and if n > oo, then

1/2

2i Qn(cos(d) sin()) = (D(e™*") ' ™7 — D(e'”) e D7) / []_[ +0(1)

=1

on compact subsets of 0 < ¢ < z. If additionally

i(laj—1/4| +bj]) < 0
=1

then the result holds uniformlyon 0 < ¢ < 7.
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3. If x=cos(d) for ¢ € (0, n) and if n - oo, then

QA(COS(#) — Qn-1(COS(¢)) Qns1(cOS(¢)) = D(e™*’) D(e"”) / [ J@-vj)+ow

j=1

holds uniformly on all compact subsets of 0 < ¢ < x. If additionally

[oe]

D iaj=1/4 +|bj]) < oo,

j=1
then the result holds uniformly on 0 < ¢ <.
4.1fin f(z)b,eR,a,>0foralln=0, 1, 2, .. and if A(®) =arg(D(e'”)) is

chosen as a continuous function of ¢ on 0 < & < xr, then
1/2

Qn(cos(®) sin(#)) = |D(e"’)| sin((n + 1) ¢ — A (8) / ln(l -vj)| +0®
j=1

uniformly on compact subsets of 0 < ¢ <7 as n - co.

TheoremForMeromorphicExtensionOfTFractionsl
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Let T(z) be a general limit periodic T-fraction of the form
1

T@)=
1+d02— Gz

X3

1+d; z- —
1+dy z—%—

where ¢y, dy_; € C are complex numbers with ¢, # 0 for n = 1 and where
lim,,eCh=ceC, lim,,.d, =deC. Let S denote the divergence line of T. The
following cases exhaust all possible values of S.

1. If d =0, then it can be assumed without loss of generality that c=1/4 and
hence S=[1, co c R* where R* denotes the set of all positive real numbers.

2. Letce C and d # 0. In this case, it can be assumed without loss of generality
that d = 1. In each such case, -1 € S and

s={(tc"?+(c- 1)) : -1<t<1}

holds where all roots are assumed to be positive. The cases are, more precisely:
(a) Ifd=1and c<0, then

S =[~(del + DY2 + 1eY2), ~((lel + DY - [e]2)?] c R

where R~ denotes the set of negative real numbers.

(b) Ifd=1and 0<c<1, then S is equal to the subarc of the unit circle contain’
ing —1 having endpoints (c*? +i (1 - c)l/z)2 iNR?=C.
(©)Ifd=landc=1,thenS={zeC : |z|=1}.
(dIifd=1landc>1,thenS=1J{zeC : |z| =1} where

I =[(c2 - (c - DY), (2 + ¢ - VY] cR* with L e .

(e) Ifd=1and c=c| &' with 0 < ¢ <, then S c S” where S is the trigonomet’
ric spiral

S'={z=re" : r=r@)=sin((+8)/2)/sin (Y - 9/2), d<y <2r -0}

with r(y) strictly decreasing from co to 0. In particular, S is the subarc of S’

which passes through —1 and has endpoints r (o) e'%° and r (2 7 — o) e ¥°
where g is characterized by the identity cosyg =|c| —|c — 1], d <y <.

TheoremForMeromorphicExtensionOfTFractions2



Let T(z) be a general limit periodic T-fraction of the form
1

C 2

T@)=
1+d02—

X3

1+d; z- —
1+dy z—%—

where ¢y, dy_; € C are complex numbers with ¢, # 0 for n = 1 and where
lim,Ch=ceC, lim,,.d,=deC. Suppose further that the partial quotients
of T satisfy

(o]

Z(|Cj - C| + |d] - d|) RJ < o0

=1
for some R > 1, let S denote the divergence line of T, and let S(R) denote the
boundary curve of the region into which a meromorphic extension of T across S
exists. The following cases exhaust all possible values of S(R) where, through™.
out,a=(R+R™*)/2andb=(R-R™)/2.

1. If d =0, then without loss of generality, c = 1/4. In this case,
SRI={z=re" :r=r@)=2(-cosy)/b*, 0<y=<2n)

and r’ () > 0. In this case, for R large, S(R) is almost a circle of radius 4/R

around 0; also, the endpoints of S=[1, o are firs torder algebraic branch
points for the extended meromorphic version of T presuming T # co.

2.1fd=1,c=|c| €’ ¢ eR, then S(R) consists of two curves S..(R) defined as
follows:

S.R)={z=re’ i r=r.()=P.W)/Q (), ¥1=yYy=271—yi},
where QW) =2[c|(@a—cos(y —#)) >0, p=alc|+|c—1|>1,
g=alcl-|c-1]>-1, and

P. ) =sin?y + (blc| = (p — cos y) (q — cos y) 2%,

Y1 <y <2m— 1. Moreover:

(@) Ifg=1, they, =0.

(b) If g < 1, ¥4 denotes the unique solution of cosy; =q, 0 <y <.

(c) Always, r, W) >r_W)>0fory, <y <2m—ys.

(@) fg<1,0<yy<mr,W)=r_-W1)>0,r, CQrn-y1)=r_Q2r—-y1)>0.
@ Ifg=1,¢v,=0,r,0O)=r,2m)=r_0)=r_(2n1)>0.
®Ifg>1L¢y,=0,r.,(0)=r,2m>r_(0)=r_(2n)>0. For large R, S.(R) are

almost circles of radius |c| R, (lc| R)™2, respectively. If c =1, then r, ) =R,
rrW)=1/RforO=<y <2n.
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Let @ = [bg; by, by, .. ] be a continued fraction and suppose A,/B, denotes its
nth convergent. Then « is transcendental if there exist functions e: Z* - R*,
k:Z* - Z* and constants 6, ¢; €R for which (i) b,k ) = ¢, BE™ for infinitely

many ne Z*, and (i) liminf_. (e(n)/6 - (L + 6)*™1)> 0.

TruncationBoundsForLimitPeriodicContinuedFractionsl

Let £ be a generalized continued fraction

< a
(=K =
k=1 1
and set
A=A
Anzsupv|am|
m=n
1 1
an= [am+— — —
2
2-A
ey
—Tn—A+2

€n = P sup |am|
m=n

an
tn =
z+1
and T, be the composition of ty, ... , t.

If £ is a limit periodic continued fraction and
lima,=0

N—oo

and A< 2/3 and sup |am| < (1 — A) Py, then & converges and

m=n

%
ITo(@ne) = Tl < 2en(TThes 7705 )

TruncationBoundsForLimitPeriodicContinuedFractions2
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Let ¢ be a generalized continued fraction
¢=K —

k=1 1
where

lim a, =a.

N0
Define a;, by

an (@n+1)=an

and |a,| < lan + 1], then
a(d+1)=a.

Set
an

tn: ]
z+1

let T, be the composition of t, .. , t,, and let £ be a limit periodic continued
fraction. Then liminf(|—a + u, — 1|) > 0 implies ¢ converges and

lim (Tn(un) =T.

TruncationErrorOfPositiveContinuedFraction

Let

k=1 by
be a continued fraction and f, = p,/qx the sequence of its convergents. Let a,

b, > 0 for all k. Then for any m = 1 the following holds:
. (=D ana(fo = foa)
0<(=D"(frum—f) = e\
bn bn+1 + an+1(1 —ay ;_;)

TwoElementContinuedFractionRepresentationOfReals
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Let @y, a, be positive reals where a; < @y, and set

\/a§a§+4alaz - @y

B1=
2(),’2
\/afa§+4ala2 -y
B= :
20,’1

Given x is an irrational number where 0 < x <1, let

o 1
¢=K —

n=1 b,
be the regular continued fraction of x. Let La, be real numbers x where
b, € Ay ={aq, ap}. Thengiven a; ap <1/2,

LAz = [ﬂl! BZ]

UltraCloseApproximation

Let a € (0, 1) be arbitrary. The rational number p/q is said to be an ultra-close
approximation to « if among all rationals x/y with denominators y < q, p/q has
the least ultra-distance to «, i.e., p/q is an ultra-close approximation to « if and

=min{y

UltraDistance

Let @ € (0, 1) be arbitrary and let p/qg be any rational number. The ultra-dis’

only if

X
——a

y

——a

q

q

X
1—eQ,y=q;.
y

tance from p/q to « is defined to be q|(p/q) — a|.

UltraDistancesAmongFareyPairsAndTheirMediants

Let a/b and c/d be a Farey pair with mediant M = (a + ¢)/(b + d). Then the ultra-
distance between a/b and M is the same as the ultra-distance between ¢/d and
M.

UnboundedPeriodsForOddDegreeFamily
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Let d(X) be a polynomial, e be the exponent of d(X), a be the leading coefficient

set of d(X) where X is an integer, \/ d(X) be a quadratic irrational number, ¢ be
its regular continued fraction, and I(X) be the regular continued fraction period
of £. Given

emod2=1\V-a=n?
then it follows that I(X) is unbounded.

UnboundedPeriodsForSimpleQuadraticFamily

Let
d(X)=r+ X?

be a polynomial, X be an integer, r be an integer, v/ d(X) be a quadratic irra-.
tional, ¢ be its regular continued fraction, and I(X) be the regular continued
fraction period of £&. Givenr+0,r+ -1, r+1,r+2, r+ -2, r+4,and r+ -4, it
follows that I(X) is unbounded.

UniformlyDistributedModuloOne

LetEc[0, 1, w= {xn},’}‘=1 a sequence of real numbers and define A(E; N; w) so
that

AE;N;w)=8{n: 1=<n=<Nandfrac(x,) € E},

where & A denotes the number of elements of A for all sets A and frac(y)
denotes the fractional part of the element y for all y. Then w is said to be
uniformly distributed modulo one if for every pair a, b withO<a<b <1, each
interval [a, b contains the “appropriate number of terms”’in A([a, b; N, w) as
N - oo, i.e., If

lim A(la, b);N;w b

N-oo N

—a.

UnimodularMap

A homographicmapm:ze (az+b)/(cz+d)is called unimodular if
a,b,c,deZilanddetm=ad-bce{+1, +i}.

UniguenessOfCDuallyRegularExpansionsForlrrationals
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Any irrational number @ € R\Q has precisely one C-dually regular continued
fraction expansion.

UniquenessOfCRegularExpansionsForlrrationals

Any irrational number ¢ € R\Q has precisely one C-regular continued fraction
expansion.

UniquenessOfirrationalContinuedFractionExpansions
Let @; be an irrational number where 0 < <1,
< 1
§1=”1=<1 b1(n)

be its regular continued fraction, @, be an irrational number where 0 < a, <1,
and

< 1
£=K

n=1by(Nn)
be its regular continued fraction of a,. Then given a1 = a», it follows that
b1(n) =by(n).

UnigueRegularChainRepresentationsOfCertainComplexNu
mbers

For any complex number ¢ € C which is not properly equivalent to a real num’
ber, there exists exactly one regular chain ch ¢ representing &.

VanVlecklensenTheorem
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Let ¢ be a regular continued fraction of the form

b2+b3+...

where each partial denominator by is an arbitrary complex number and let
w,, =[0; by, by, .. , by] denote the nth convergent of £. Suppose further that
Re (b,) > 0 for all n and that, for 8 < /2 arbitrary, |arg(bh,)| < 6. Then:

The sequences {w, ,} and {w» .1} of even and odd convergents of &, respec’
tively, converge.

The sequence {wy} converges if and only if > ; [by| = co.
For all m = n, [Wpy — Wn_y| < 1/d, for d, = kcos(6) In(1 + A cos(6) 35_, [by|). Here,
x =Re(b;)/(2 + Re(by)) and A = (Re(by)? min {1, 1/|by[?}.

VanVleckTheorem
Let

< 1
¢=K —
k=1 b
be a continued fraction with b; # 0 and all the b, € C with Re(b,) >0/ b, =0.
Then & converges if and only if

i|bk| = oo.
k=1

VanVleckTheoremOnConvergenceOfRegularCFractions

Let £ be a regular C-fraction,

< a,z
=K =

n=1 1
f be a meromorphic function, T be {-t/(4a):t> 1},
D=C-T

be a domain, V be the poles for f in D, and K be any complex compact set in D
disjoint from V and I'. Then given

lima, = a,

N—oo

there is a meromorphic function f such that Y & converges uniformly on K to f.
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VeryWellApproximableNumbersConvergentDenominators
DivergelnLogarithmicMean

Let
© 1
¢=K —
n=1 bn
be a regular continued fraction, B,, be the convergent denominator of &, € be a
positive real, and S(e) be the natural numbers n where by,; > B;,. Then the

existence of an e such that S(e) is finite if and only if ¢ is well approximable, and
if £ is very well approximable, then lim,,_, In(B,)/n does not converge.

VincentTheorem

Given a polynomial equation with rational coefficients that does not have
multiple roots, making successive transformations of the form

1 1 1
X=bi+—, X'=by+ —, X" =b3+
Xl Xl/ X/l/

where by, by, .. are any positive numbers b; = 1, the resulting transformed
equation has either zero or one sign variations.

If there are zero sign variations, the polynomial equation has no root.
If there is one sign variation, the polynomial equation has a single positive real
root represented by the continued fraction

1

1

1
b3+j

b1-+

b2 +

WoaadelandTailTheorem
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A sequence {g(")}:’:O of nonzero complex numbers satisfying g® = —1 for

k=1, 2, 3, .. isthe sequence of right tails for some convergent continued
fraction

=K
m=1 1

b,eC\{0}, k=1, 2,3, .., if and only if

1+k1+K1ko+K1KpKg+ oo =00,

where

—1+g(”)

Kn= g™

forn=1, 2, 3, .. . When this result does hold, the elements b, of & necessarily
have the form

b = g% (1 +g%*Y)
fork=0,1, 2, .. .

WallTransformation
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The phrase “Wall transformation”’is an unofficial term referring to a certain
transform of complex-valued functions studied by H.S. Wall, among others, and
is notable for its end result, namely the expression of a complex-valued func™.
tion f as an equivalent continued fraction. Not to be confused with the closely-
related Schur algorithm for complex-functions, the Wall transform describes
more so the underlying continued fraction theory of the elements used by
Schur in his algorithm. A more precise version of this distinction is as follows.

Given a function f = fy : QO —» C where Q) c C is a region, Schur 3 algorithm

determines a sequence {f,}_, of complex-valued functions for which
z fr1 (@ + £,(0) (1-1f.00%)z

fn(@= =f 0+ .
1+ 0z for @ f0)z+ 1/ (2

Substituting the resulting expressions in terms of lower-indexed terms, one

obtains for f the so-called Wall continued fraction ¢&; of the form
(1-la0l?)z

b=+ ————

AWz

(1-lay?)z
at+——

where a, = f,(0) forn=1, 2, 3, .. . By way of the maximum principle, the
process stops if |a,| = 1 for some n and continues ad infinitum otherwise.
The Wall transformation, then, is the collection {7}, of Mdus transforma

tions where for each n, r,(w) is of the form
ZW + ap

Tn (W) = —
l+a,w

and is related to the aforementioned algorithm of Schur by the identity

f(@)=100Tr10- 07 (fhin),

where n is either the index for which |a,| = 1 or h = co otherwise. Analogous to

the typical recurrence notation for continued fraction convergents, the above

identity for f in terms of 7, leads to the expression

An+zBLw

00710 0Tp (W)= ——————
Bn+z AW

for all w e C, where {A,}, {B,} are collections of polynomials (called Wall

polynomials) and where p;. (z) = z" pn(1/2) for any polynomial p,. Here, by

definition, Bo = Bj =1, Ag = agp, and Aj =ag. Using this construction, one can

immediately prove analogous versions of the determinant continued fraction
identity, along with a wide array of identities concerning analytic functions of
the unit ball, Blaschke products, and orthogonal polynomials.

WilliamsConjecture
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The period length p(d) of a regular continued fraction expansion of Vd for
positive integer d should, under the extended Riemann hypothesis, be bounded
above by ¢ vd In(In(d)) for a suitable c:
p(d)

Vd In(n()) ford=1(mod8)
{ Vd In (In(4d)) ford=+1(mod38)
where € = 3.7012.
Possibly, ¢ =12 exp(y) In(2) /7* ~ 1.501.

<t+0(1),

WorpitzkyTheorem

Let &= Ka,/1bea generalized continued fraction with partial numerators a,,
n=1

satisfying O < |ap|<1/4 foralln=1. Then
1) ¢ converges absolutely for some value of £ with 0 < |¢] <1/2

2)0<|Spw)|=1/2forallneZ* and |w| < 1/2, where S, (w) is the nth approxi’
mant function.

ZajtaPandikovContinuedFractionToPowerSeriesConversion

The continued fraction
1 fork=1
© | -zt fork+1

£é=0+K
k=1 1

has the following equivalent power series representation

£=1+) Fal@1, 25, ., 2"

k=1
where the coefficients Fn(z4, 25, .. , z,) are
n
_ Ck—1 +Cx — 1 o
Fn(zl1 221 LI | Zn) - Z(Z( Ck )Zk
P \k=2

where the outer sum extends over all unordered partitions p(n) of the integer n
into n nonnegative parts ¢,: 33_; ¢k =N.

ZarembaConjecture



302

Results.nb

Let Ra be the set of all finite continued fractions with all partial denominators
bounded by an integer A > 0:

b N1
RAz{_=K—: v 1sbksA/\NeZ*/\N<oo}.

d k=1b, 1=ksN

Let D4 be the set of all denominators occurring in Ra:
b
Da= {d 13, gcdd, d) =1 /\ - eRA}.

Then for sufficiently large A, Do =Z" holds.

ZarembaConjectureForLargeA

Let R be the set of all finite continued fractions with all partial denominators
bounded by an integer A > 0:

b N1
RAZ{_zK—- v 1sbksA/\NeZ*/\N<oo}.

d kelb, 1<keN

Let D, be the set of all denominators occurring in Ra:
b
Da= {d 13, ged(b, dy=1 /\ " eRA}.

Then for sufficiently large A, and N € Z*,
cardDa N [1, N]) =N +o(1)).

ZarembaConjectureForSmallPowers

Let Ra be the set of all finite continued fractions with all partial denominators
bounded by an integer A > 0:

b N1
RA={—=K—: v 1sbksA/\NeZ*/\N<oo}.

d k=1b, 1=ksN

Let D, be the set of all denominators occurring in Ra:

b
Da= {d 13, gcdd, dy =1 /\ - eRA}.

Then all powers of 2 and all powers of 3 are in Ds.



