
AccuracyOfFiniteContinuedFractionApproximationsForIrrat

ionals

Let Α Î R �Q be an irrational, let Ξ be its unique associated regular continued 

fraction of the form Ξ � @b0; b1, b2, … D, and let An � Bn � @b0; b1, b2, … , bnD 
denote its nth convergent. The degree of accuracy of the approximation of Α by 

An � Bn satisfies

1

BnHBn + Bn+1L
£ Α -

An

Bn

£
1

Bn Bn+1

for all n ³ 0.

AdamsMetricalTheorem

Let Α and Β be irrationals with 0 < Α, Β < 1,

Ξ1 � K
n=1

¥ 1

an

be the regular continued fraction of Α,

Ξ2 � K
n=1

¥ 1

bn

be the regular continued fraction of Β, and let Αn, Βn be the respective continu�

ants.  Define

ΨΝHn, Α, ΒL � number of integers 0 £ j £ n - 1 such that a j+1 � b1,

… , a j+Ν � bΝ, and ΑΝ+ j+1 > ΒΝ+1

jΝHn, Α, ΒL � number of integers 0 £ j £ n - Ν such that a j+1 � b1,

… , a j+Ν � bΝ, and ΑΝ+ j+1 > ΒΝ+1

where Ν, n, and j are non-negative integers.  Then for almost all Α the following 

identities hold:

lim
n®¥

1

n
â
Ν=0

¥

H-1LΝ
ΨΝHn, Α, ΒL �

lnH Β + 1L

lnH2L

lim
n®¥

1

n
â
Ν=0

¥

H-1LΝ
jΝHn, Α, ΒL �

lnH Β + 1L

lnH2L
.

AlgebraicIndependenceCriterionForContinuedFractions



Let ΑH jL � Ab0

H jL
; b1

H jL
, b2

H jL
, … E be regular continued fractions for j � 1, 2, … , t and 

let their nth convergents be denoted An

H jL
� Bn

H jL
. Then the collection ΑH1L, … , ΑHtL is 

algebraically independent if there exits a bounded function k : Z
+ ® Z

+  such 

that (i) lnIb
k n+n

t M � lnIB
n

1M is undbounded for all n Î Z
+ and (ii) For j � 2, 3, … , t,

0 < lim inf
n®¥

bn

H jL

bn

H j-1L
< 1 and 0 < lim sup

n®¥

bn

H jL
+ 1

bn

H j-1L
< 1.

AlgebraicIndependenceOfNNumbers1

Let Ξi, i � 1, 2, … , n be n irrational numbers with regular continued fraction 

expansion

Ξi � bi,0 + K
j=1

¥ 1

bi, j

with bi, j Î Z
+ and convergents Ai,n � Bi,n.

Let r > 1 and let 9n j= j=1

¥
 be a sequence of increasing positive integers and let f HnL 

be an integer-valued function for integer argument n and limn®¥ f HnL � ¥.

If there exists a subsequence 8ni<i=1
¥  such that for all i � 1, 2, …

bi,n j+1 ³ B1,ni

f HiL

and

B j-1,ni
³ r

f HiL
B j,ni

and

B j-1,ni+1 ³ r
f HiL

B j,ni+1,

then the Ξi are algebraically independent over Q.

AlgebraicIndependenceOfNNumbers2
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Let Ξi, i � 1, 2, … , n be n irrational numbers with regular continued fraction 

expansion

Ξi � bi,0 + K
j=1

¥ 1

bi, j

with bi, j Î Z
+.

Let r > 1, Τ > 1, and 9n j= j=1

¥
 be a sequence of increasing positive integers and 

f HnL be an integer-valued function for integer argument n and limn®¥ f HnL � ¥.

If there exists a subsequence 8ni<i=1
¥ such that for all i � 1, 2, …  and 

j � 2, 3, … , n

b1,ni
³ b

j,ni

Τ

and

b j-1,ni
³ r b j,ni

and

b j,ni+1 ³ b1,ni

gHiL
,

then the Ξi are algebraically independent over Q.

AlgebraicIndependenceOfNNumbers3

Let Ξ be an irrational number with regular continued fraction expansion

Ξ � b0 + K
j=1

¥ 1

b j

with unbounded partial quotients b j. If there exist n positive integers gi ³ 2, 

i � 1, 2, … , n, then the n numbers xi, i � 1, 2, … , n.

xi � Hgi - 1L â
j=1

¥

gi

-d j Ξt

are algebraically independent over Q.

AlgebraicIndependenceOfTwoContinuedFractions
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Let Ξ and Η be two continued fractions

Ξ � b0

HΞL
+ K

j=1

¥ 1

b j

HΞL

Η � b0

HΗL
+ K

j=1

¥ 1

b j

HΗL

with b j

HΞL
, b j

HΗL
Î Z

+.

Let r > 1, 9n j= j=1

¥
 be a sequence of increasing positive integers, f HnL be an inte�

ger-valued function for integer argument n, and lim j®¥ f In jM � ¥.

Then if for all n Î Z
+

bn

HΞL

r

³ bn

HΗL
³ Jbn-1

HΞL
N

f Hn-1L
,

Ξ and Η are algebraically independent over Q.

AlgebraicIndependenceOfTwoNumbers

Let Ξ be an irrational number with regular continued fraction expansion

Ξ � b0 + K
j=1

¥ 1

b j

.

If there exist two positive integers g1 ³ g2 > 1 such that for all j ³ 1

bn ³ 1 + 2
lnHg1L

lnHg2L

then the two numbers x1 and x2

x1 � â
j=1

¥

Hg1 - 1L g1

d j Ξt

x2 � â
j=1

¥

Hg2 - 1L g2

d j Ξt

are algebraically independent over Q.

AlgebraicNumberContinuedFractionTermBounds
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Let Ξ be an algebraic number with minimal polynomial PHxL of degree d with 

regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

with Ak � Bk the sequence of its convergents.  Then there exists an m > 0 such 

that for all n > m

bn <  P ' HΞL¤ B
m-1
d

.

Algorithm:AyresBackwardMethod

Given the partial denominators bn of a regular continued fraction

Ξ � b0 + K
n=1

N 1

bn

the value of Ξ can be computed by letting

PN � bN

and iterating

Pn � bn Pn+1 + Pn+2

from n � N - 1 to n � 0.  The value of Ξ is then given by

Ξ �
P0

P1

.

Algorithm:AyresForwardMethodRationalNumber

Given a rational number r � p �q, the partial denominators bn of the finite 

regular continued fraction

Ξ � b0 + K
n=1

N 1

bn

of r can be computed by setting P-1 � p, P0 � q and iterating

bn �
Pn-1

Pn

Pn+1 � Pn-1 - bn Pn

starting with n � 0 until PN � 1 and then taking bN � PN-1.

Algorithm:AyresForwardMethodSurd
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Given an irrational square root N , its continued fraction

Ξ � b0 + K
n=1

¥ 1

bn

can be calculated by iterating

An � bn-1 Bn-1 + Cn-2

Bn � bn-1 Cn-1 + Dn-2,

where

Cn � An mod Bn

bn �
An

Bn

Dn � Bn mod Cn

until An � 2 m and Bn � k when the process repeats where N � m
2 + k.

Algorithm:AyresMethodLinearDiophantineEquations

Let a, c, d, x, y be integers where

gcdHa, cL � 1

a x � c y + d.

Then one can find a solution for x and y by computing the continued fraction 

for a �c, finding its representation as

Ξ � a0 + K
n=1

N 1

an

where N is even (for odd representations can be extended with aN � 1) and 

taking the numerator and denominator of

p �q � a0 + K
n=1

N 1

an

yields a solution to

a p � c q + 1

and so one can set x � d p and y � d q.

Algorithm:BackwardAlgorithm

6     Results.nb



Let Ξ be the finite continued fraction of a rational number x

Ξ � b0 + K
j=1

n a j

b j

.

The backward algorithm calculates the value of Ξ through the recurrence 

relation

Qn �
an

bn

Qk-1 �
ak-1

bk-1 + Qk

for k � n, n - 1, … , 1, and the value is Ξ � b0 + Q1.

Algorithm:BackwardAlgorithmRegular

Let Ξ be the finite regular continued fraction of a rational number x

Ξ � b0 + K
j=1

n 1

b j

.

The backward algorithm calculates the value of Ξ through the recursion relation

Qn � bn

Qk-1 �
1

bk-1 + Qk

for k � n, n - 1, … , 1, and the value is Ξ � b0 + Q1.

Algorithm:ChisholmContinuedFractionSolutionOfRiccatiOD

E
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The general Riccati differential equation

y
¢HxL � a0HxL + a1HxL yHxL + a2HxL yHxL2

can be transfomed into reduced form

z
¢HxL � b0HxL - zHxL2

using the transformation

yHxL � -
a2HxL Ha1HxL + 2 zHxLL + a2

¢HxL

2 a2HxL2
,

where

b0HxL �
1

4 a2HxL2
Ia2

¢¢HxL + 2 a1HxL a2HxL a2
¢HxL + 3 a2

¢HxL2
+

a1HxL2
a2HxL2

- 2 a2HxL Ha2HxL Ha1
¢HxL + 2 a0HxL a2HxLLM.

The solution of the reduced Riccati equation

z
¢HxL � b0HxL - zHxL2

can be expressed as a continued fraction in the form

zHxL � C + ü
k=0

¥
bkHxL - C

2

1

2
b

k

¢ HxL IbkHxL - Α2M + 2 C

,

where C is the differential equation's constant of integration.  The bkHxL obey 

the following recursion relation:

bkHxL � bk-1HxL +
C b

k-1
¢ HxL

bk-1HxL - C
2

+
3 b

k-1
¢ HxL2

4 Ibk-1HxL - C
2M2

-
b

k-1
² HxL2

2 Ibk-1HxL - C
2M

.

Algorithm:CoefficientsOfStieltjesFractionForBinetsFunction

Let JHzL � lnHGHzLL + z - Hz - 1 �2L lnHzL - 1 �2 lnH2 ΠL be the Binet function. Then 

the coefficient ak of its S-fraction

JHzL � K
k=0

¥ ak

z

obey the following recurrence relation:

a0 � c0

ap �
Ú
j=0

p-1

∆ j�2 mod 2 c j�2 Au jE IqpM

c0 Û
j=0

p-1

a j

where

q0 � c0

qp � u qp-1 - ap-1 qp-2

cp �
B2 p+2

H2 p + 1L H2 p + 2L

and @unD HqL denotes the coefficient of un in the polynomial q.

The ak are all rational numbers and the first are:

a0 �
1

12

a1 �
1

30

a2 �
53

210

a3 �
195

371

a4 �
22 999

22 737

a5 �
29 944 523

19 733 142

a6 �
109 535 241 009

48 264 275 462

a7 �
29 404 527 905 795 295 658

9 769 214 287 853 155 785

a8 �
455 377 030 420 113 432 210 116 914 702

113 084 128 923 675 014 537 885 725 485

a9 �
26 370 812 569 397 719 001 931 992 945 645 578 779 849

5 271 244 267 917 980 801 966 553 649 147 604 697 542

a10 �
152 537 496 709 054 809 881 638 897 472 985 990 866 753 853 122 697 839

24 274 291 553 105 128 438 297 398 108 902 195 365 373 879 212 227 726

a11 �
100 043 420 063 777 451 042 472 529 806 266 909 090 824 649 341 814 868 �

347 109 676 190 691 �

13 346 384 670 164 266 280 033 479 022 693 768 890 138 348 905 413 621 �

178 450 736 182 873

a12 �
76 505 453 770 729 679 546 978 925 279 947 999 751 358 882 390 333 162 �

643 791 755 779 220 628 608 937 055 725 �

8 462 374 626 124 882 026 566 154 328 209 420 711 352 946 133 738 527 �

825 697 131 889 768 847 210 043 866 097.
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Let JHzL � lnHGHzLL + z - Hz - 1 �2L lnHzL - 1 �2 lnH2 ΠL be the Binet function. Then 

the coefficient ak of its S-fraction

JHzL � K
k=0

¥ ak

z

obey the following recurrence relation:

a0 � c0

ap �
Ú
j=0

p-1

∆ j�2 mod 2 c j�2 Au jE IqpM

c0 Û
j=0

p-1

a j

where

q0 � c0

qp � u qp-1 - ap-1 qp-2

cp �
B2 p+2

H2 p + 1L H2 p + 2L

and @unD HqL denotes the coefficient of un in the polynomial q.

The ak are all rational numbers and the first are:

a0 �
1

12

a1 �
1

30

a2 �
53

210

a3 �
195

371

a4 �
22 999

22 737

a5 �
29 944 523

19 733 142

a6 �
109 535 241 009

48 264 275 462

a7 �
29 404 527 905 795 295 658

9 769 214 287 853 155 785

a8 �
455 377 030 420 113 432 210 116 914 702

113 084 128 923 675 014 537 885 725 485

a9 �
26 370 812 569 397 719 001 931 992 945 645 578 779 849

5 271 244 267 917 980 801 966 553 649 147 604 697 542

a10 �
152 537 496 709 054 809 881 638 897 472 985 990 866 753 853 122 697 839

24 274 291 553 105 128 438 297 398 108 902 195 365 373 879 212 227 726

a11 �
100 043 420 063 777 451 042 472 529 806 266 909 090 824 649 341 814 868 �

347 109 676 190 691 �

13 346 384 670 164 266 280 033 479 022 693 768 890 138 348 905 413 621 �

178 450 736 182 873

a12 �
76 505 453 770 729 679 546 978 925 279 947 999 751 358 882 390 333 162 �

643 791 755 779 220 628 608 937 055 725 �

8 462 374 626 124 882 026 566 154 328 209 420 711 352 946 133 738 527 �

825 697 131 889 768 847 210 043 866 097.

Algorithm:ContinuedFractionExpansionByExcess
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Algorithm:ContinuedFractionExpansionByExcess

Let x be a real number. Then the by-excess continued fraction expansion

Ξ � b0 + K
j=1

N -1

b j

(where N is possibly infinity) can be calculated through the repeated applica�

tion of the generalized Gauss map Τ: @0, 1 ® @0, 1

ΤHxL �
1

x

-
1

x

through

b0 � `xp

b j �
1

Τ jHxL
.

Algorithm:ContinuedFractionExpansionRegular

Let x be a real number. Then the regular continued fraction expansion

Ξ � b0 + K
j=1

N 1

b j

(where N is possibly infinity) can be calculated through the repeated applica�

tion of the Gauss map Τ: @0, 1 ® @0, 1

ΤHxL �
1

x

-
1

x

through

b0 � dxt

b j �
1

Τ jHxL
.

Algorithm:EulerMindingSummationAlgorithm
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Let Ξ be the finite continued fraction of a rational number x

Ξ � b0 + K
j=1

n a j

b j

.

The forward algorithm calculates the value of Ξ through the recursion

B-1 � 0

B0 � 1

Bk � bk Bk-1 + ak Bk-2

and is given as

Ξ � b0 - â
k=1

n
Û
j=1

k

I-a jM

Bk-1 Bk

.

Algorithm:EulerMindingSummationAlgorithmRegular

Let Ξ be the finite regular continued fraction of a rational number x

Ξ � b0 + K
j=1

n 1

b j

.

The forward algorithm calculates the value of Ξ through the recursion

B-1 � 0

B0 � 1

Bk � bk Bk-1 + Bk-2

and is given as

Ξ � b0 - â
k=1

n H-1Lk

Bk-1 Bk

.

Algorithm:FareyProcess

Start with a Farey pair a �b and c �d and take their mediant M0. Inserting M0 

into the Farey interval I0 � @a �b, c �dD yields two Farey subintervals 

I1
1 � @a �b, M0D and I1

2 � @M0, c �dD, thus completing step one. For step two, create 

the mediants M1
1 and M1

2 of I1
1 and I1

2, respectively, whereby four Farey subinter�

vals I2
j
, j Î 81, 2, 3, 4<, result. Continuing inductively, at the kth step, there will 

be 2k mediants M
k

j
, one for each of the 2k Farey subintervals I

k

j
, j � 1, 2, … , 2k.

Algorithm:FareyProcessZeroed
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Algorithm:FareyProcessZeroed

Given a particular number Α lying in a Farey interval, a modification of the 

Farey process can be made in which one “zeroes in on Α” by dividing said 

interval into Farey subintervals. This is done by inserting the mediant into the 

original Farey interval, whereby two subintervals are created, and considering 

only the resulting subinterval containing Α. Then, the process is repeated 

inductively until approximations suitably close to Α are obtained.

More precisely, let Α be a number lying in some Farey interval I0 � @a �b, c �dD. 
Form the mediant M0 � Ha + cL � Hb + dL and insert it into I0, resulting in two 

subintervals I1
1 � @a �b, M0D and I1

2 � @M0, c �dD. At this junction, Α Î I1
j
 for 

j Î 81, 2<. Assuming Α Î I1
j
, form the mediant M1 � Ha + c0L � Hb + d0L where 

c0 �d0 � M0 and consider the resulting Farey intervals I2
1 � @a �b, M1D and 

I2
2 � @M1, M0D. Continue inductively, whereby at the kth iteration there exist 

two Farey subintervals I
k-1
1  and I

k-1
2  with Α Î I

k

j
, j Î 81, 2<, and Mk the mediant 

of I
k

j
.

If Α � p �q is rational in lowest terms, then this process terminates and Α 

appears as an endpoint of a Farey pair at some stage of the process. If instead Α 

is irrational, then this process can be continued ad infinitum until a rational 

approximation within a specified error bounds is obtained.

Algorithm:FastContinuedFractionAlgorithm
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The fast continued fraction algorithm is a modified version of the zeroed Farey 

process in which some information calculated as part of the latter is discarded 

in exchange for asymptotic speed. In particular, note that for a given x 

(generally irrational), the zeroed Farey algorithm performs a “zeroing in” 

process by way of creating a series of shrinking Farey intervals containing x, 

each of whose endpoints are recorded as best left and right rational approxima�

tions to x. The fast continued fraction algorithm gains computational speed by 

recording only the last such “zeroing in” when successive shrinkings occur on 

one side of x or the other.

To be more precise: Start with an irrational number x in some Farey interval 

@a �b, c �dD. In the zeroed Farey process, it may happen that a succession 

a1 �b1, a2 �b2, … , ak �bk of iterations occur to zero in on x from (without loss of 

generality) the left; in the slow algorithm, all 2 k of these integers would be 

recorded whereas in th fast algorithm, computational methods are applied to 

determine only the kth values ak, bk so as to eliminate computational overhead. 

As part of the fast algorithm, a “stopping index” s is computed and maintained 

to provide a guaranteed stopping point to the otherwise-infinite algorithm.

Here are the tools needed to implement the fast algorithm. Again, x is assumed 

throughout to be an irrational number lying in the Farey interval @a �b, c �dD.

(i) For each k, ak+1 �bk+1 is the mediant of the interval @ak �bk, c �dD. Therefore, 

one can compute ak, bk: ak � a + k c, bk � b + k d.

(ii) Consider the function f HzL � Ha + z cL � Hb + z dL and note that the real num�

ber y for which f HyL � x satisfies y � Hx b - aL � Hc - x dL. See the pseudo-code 

below.

(iii) The stopping index s is defined by s � dyt.

(iv) Redefine y recursively: y � 1 � Hy - sL.

The following pseudocode describes this process in more explicit detail. The 

variables need are a, b, c, d, y, s, a _ s, and b _ s. Further, x as above represents 

the number being approximated and n a positive integer denotes some pre�

scribed number of iterations to perform.

Loop {

  s = floor (y);

  

  a_s = a + sc;

  b_s = b + sd;

  Print : s, a_s, b_s;

  

  a = c;

  b = d;

  c = a_s;

  d = b_s;

  y = 1/(y - s);

  } Until {s = n}

Algorithm:ForwardAlgorithm
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Algorithm:ForwardAlgorithm

Let Ξ be the finite continued fraction of a rational number x

Ξ � b0 + K
j=1

n a j

b j

.

The forward algorithm calculates the value An � Bn of Ξ through the recursion 

relation

A-1 � 1

A0 � b0

Ak � bk Ak-1 + ak Ak-2

B-1 � 0

B0 � 1

Bk � bk Bk-1 + ak Bk-2,

and the value is Ξ � b0 + An � Bn.

Algorithm:ForwardAlgorithmRegular

Let Ξ be the finite regular continued fraction of a rational number x

Ξ � b0 + K
j=1

n 1

b j

.

The forward algorithm calculates the value An � Bn of Ξ through the recursion 

relation

A-1 � 1

A0 � b0

Ak � bk Ak-1 + Ak-2

B-1 � 0

B0 � 1

Bk � bk Bk-1 + Bk-2,

and the value is Ξ � b0 + An � Bn.

Algorithm:GosperRegularContinuedFractionArithmetic

Given two regular continued fraction expansions for real numbers A and B

A � a0 + K
k=1

nA 1

ak

B � b0 + K
k=1

nB 1

bk

(with nA and/or nB possibly ¥), an arithmetic operation f  (addition, subtrac�

tion, multiplication, and division) can be carried out on the sequences of partial 

denominators 8ak<
k=0

nA  and 8bk<
k=0

nB  directly to obtain the partial denominators ck 

of

C � f HA, BL � c0 + K
k=1

nC 1

ck

.

More generally, the partial denominators ck of the expression

C � f HA, BL �
a A B + b A + c B + d

e A B + f A + g B + h

(with the special cases for two continued fractions

addition a � 0 b � 1 c � 1 d � 0 e � 0 f � 0 g � 0 h � 1

subtraction a � 0 b � 1 c � -1 d � 0 e � 0 f � 0 g � 0 h � 1

multiplication a � 1 b � 0 c � 0 d � 0 e � 0 f � 0 g � 0 h � 1

division a � 0 b � 1 c � 0 d � 0 e � 0 f � 0 g � 1 h � 1

for the basic arithmetic operations)

for given rational expressions a, b, c, d, e, f , g can be computed directly from 

the partial denominator sequences 8ak<
k=0

nA  and 8bk<
k=0

nB .

Observing that the expression

a A B + b A + c B + d

e A B + f A + g B + h

(i) under the substitution A ® ak + 1 � A changes as

aIak +
1

A
M B + bIak +

1

A
M + c B + d

eIak +
1

A
M B + f Iak +

1

A
M + g B + h

�
Hc + a akL A B + Hd + b akL A + a B + b

Hg + e akL A B + Hh + f akL A + e B + f

,

(ii) under the substitution B ® bk + 1 � B

a AIbk +
1

B
M + b A + c Ibk +

1

B
M + d

e AIbk +
1

B
M + f A + g Ibk +

1

B
M + h

�
Hb + a bkL A B + a A + Hd + c bkL B + c

H f + e bkL A B + A e + Hh + g bkL B + g

,

(iii) and

1

a A B+b A+c B+d

e A B+ f A+g B+h
- ck

�
e A B + f A + g B + h

Ha - e ckL A B + Hb - f ckL A + Hc - g ckL B + Hd - h ckL

shows the shape invariance of the expression

a A B + b A + c B + d

e A B + f A + g B + h

under the operations (i), (ii), and (iii).

The two substitutions A ® ak + 1 � A and B ® bk + 1 � B can be thought as using 

the kth partial denominators and denoting the remainders by the symbolic 

variable A or B.

The operation HiiiL can be interpreted as extracting the kth digit ck from FHA, BL.

Observing that substituting A ® ak + 1 � A and B ® bk + 1 � B repeatedly Hak, and 

bk are positive integers from the regular continued fraction expansions of A and 

B) into an expression of the form

a A B + b A + c B + d

e A B + f A + g B + h

and denoting the result of this substitution by

gI8a, b, c, d, e, f , g<, 8ak, ak+1, … , ak+m<, 9b j, b j+1, … , b j+n=M

and taking into account that the remainders A and B are bounded from below 

by 1, allows to bound this expression from above and below. For sufficiently 

large m and n, there exists an integer Ω such that

Ω £ gI8a, b, c, d, e, f , g<, 8ak, ak+1, … , ak+m<, 9b j, b j+1, … , b j+n=M < Ω + 1.

Then Ω is the next partial denominator of the regular continued fraction expan�

sion of f HA, BL.

So, applying (possibly multiple times) (i) and (ii) and then (iii) repeatedly, 

allows to extract a continued fraction digit from FHA, BL. This process can be 

repeated to obtain the sequence of partial denominators 8ck<
k=0

nC .
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Given two regular continued fraction expansions for real numbers A and B

A � a0 + K
k=1

nA 1

ak

B � b0 + K
k=1

nB 1

bk

(with nA and/or nB possibly ¥), an arithmetic operation f  (addition, subtrac�

tion, multiplication, and division) can be carried out on the sequences of partial 

denominators 8ak<
k=0

nA  and 8bk<
k=0

nB  directly to obtain the partial denominators ck 

of

C � f HA, BL � c0 + K
k=1

nC 1

ck

.

More generally, the partial denominators ck of the expression

C � f HA, BL �
a A B + b A + c B + d

e A B + f A + g B + h

(with the special cases for two continued fractions

addition a � 0 b � 1 c � 1 d � 0 e � 0 f � 0 g � 0 h � 1

subtraction a � 0 b � 1 c � -1 d � 0 e � 0 f � 0 g � 0 h � 1

multiplication a � 1 b � 0 c � 0 d � 0 e � 0 f � 0 g � 0 h � 1

division a � 0 b � 1 c � 0 d � 0 e � 0 f � 0 g � 1 h � 1

for the basic arithmetic operations)

for given rational expressions a, b, c, d, e, f , g can be computed directly from 

the partial denominator sequences 8ak<
k=0

nA  and 8bk<
k=0

nB .

Observing that the expression

a A B + b A + c B + d

e A B + f A + g B + h

(i) under the substitution A ® ak + 1 � A changes as

aIak +
1

A
M B + bIak +

1

A
M + c B + d

eIak +
1

A
M B + f Iak +

1

A
M + g B + h

�
Hc + a akL A B + Hd + b akL A + a B + b

Hg + e akL A B + Hh + f akL A + e B + f

,

(ii) under the substitution B ® bk + 1 � B

a AIbk +
1

B
M + b A + c Ibk +

1

B
M + d

e AIbk +
1

B
M + f A + g Ibk +

1

B
M + h

�
Hb + a bkL A B + a A + Hd + c bkL B + c

H f + e bkL A B + A e + Hh + g bkL B + g

,

(iii) and

1

a A B+b A+c B+d

e A B+ f A+g B+h
- ck

�
e A B + f A + g B + h

Ha - e ckL A B + Hb - f ckL A + Hc - g ckL B + Hd - h ckL

shows the shape invariance of the expression

a A B + b A + c B + d

e A B + f A + g B + h

under the operations (i), (ii), and (iii).

The two substitutions A ® ak + 1 � A and B ® bk + 1 � B can be thought as using 

the kth partial denominators and denoting the remainders by the symbolic 

variable A or B.

The operation HiiiL can be interpreted as extracting the kth digit ck from FHA, BL.

Observing that substituting A ® ak + 1 � A and B ® bk + 1 � B repeatedly Hak, and 

bk are positive integers from the regular continued fraction expansions of A and 

B) into an expression of the form

a A B + b A + c B + d

e A B + f A + g B + h

and denoting the result of this substitution by

gI8a, b, c, d, e, f , g<, 8ak, ak+1, … , ak+m<, 9b j, b j+1, … , b j+n=M

and taking into account that the remainders A and B are bounded from below 

by 1, allows to bound this expression from above and below. For sufficiently 

large m and n, there exists an integer Ω such that

Ω £ gI8a, b, c, d, e, f , g<, 8ak, ak+1, … , ak+m<, 9b j, b j+1, … , b j+n=M < Ω + 1.

Then Ω is the next partial denominator of the regular continued fraction expan�

sion of f HA, BL.

So, applying (possibly multiple times) (i) and (ii) and then (iii) repeatedly, 

allows to extract a continued fraction digit from FHA, BL. This process can be 

repeated to obtain the sequence of partial denominators 8ck<
k=0

nC .
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Given two regular continued fraction expansions for real numbers A and B

A � a0 + K
k=1

nA 1

ak

B � b0 + K
k=1

nB 1

bk

(with nA and/or nB possibly ¥), an arithmetic operation f  (addition, subtrac�

tion, multiplication, and division) can be carried out on the sequences of partial 

denominators 8ak<
k=0

nA  and 8bk<
k=0

nB  directly to obtain the partial denominators ck 

of

C � f HA, BL � c0 + K
k=1

nC 1

ck

.

More generally, the partial denominators ck of the expression

C � f HA, BL �
a A B + b A + c B + d

e A B + f A + g B + h

(with the special cases for two continued fractions

addition a � 0 b � 1 c � 1 d � 0 e � 0 f � 0 g � 0 h � 1

subtraction a � 0 b � 1 c � -1 d � 0 e � 0 f � 0 g � 0 h � 1

multiplication a � 1 b � 0 c � 0 d � 0 e � 0 f � 0 g � 0 h � 1

division a � 0 b � 1 c � 0 d � 0 e � 0 f � 0 g � 1 h � 1

for the basic arithmetic operations)

for given rational expressions a, b, c, d, e, f , g can be computed directly from 

the partial denominator sequences 8ak<
k=0

nA  and 8bk<
k=0

nB .

Observing that the expression

a A B + b A + c B + d

e A B + f A + g B + h

(i) under the substitution A ® ak + 1 � A changes as

aIak +
1

A
M B + bIak +

1

A
M + c B + d

eIak +
1

A
M B + f Iak +

1

A
M + g B + h

�
Hc + a akL A B + Hd + b akL A + a B + b

Hg + e akL A B + Hh + f akL A + e B + f

,

(ii) under the substitution B ® bk + 1 � B

a AIbk +
1

B
M + b A + c Ibk +

1

B
M + d

e AIbk +
1

B
M + f A + g Ibk +

1

B
M + h

�
Hb + a bkL A B + a A + Hd + c bkL B + c

H f + e bkL A B + A e + Hh + g bkL B + g

,

(iii) and

1

a A B+b A+c B+d

e A B+ f A+g B+h
- ck

�
e A B + f A + g B + h

Ha - e ckL A B + Hb - f ckL A + Hc - g ckL B + Hd - h ckL

shows the shape invariance of the expression

a A B + b A + c B + d

e A B + f A + g B + h

under the operations (i), (ii), and (iii).

The two substitutions A ® ak + 1 � A and B ® bk + 1 � B can be thought as using 

the kth partial denominators and denoting the remainders by the symbolic 

variable A or B.

The operation HiiiL can be interpreted as extracting the kth digit ck from FHA, BL.

Observing that substituting A ® ak + 1 � A and B ® bk + 1 � B repeatedly Hak, and 

bk are positive integers from the regular continued fraction expansions of A and 

B) into an expression of the form

a A B + b A + c B + d

e A B + f A + g B + h

and denoting the result of this substitution by

gI8a, b, c, d, e, f , g<, 8ak, ak+1, … , ak+m<, 9b j, b j+1, … , b j+n=M

and taking into account that the remainders A and B are bounded from below 

by 1, allows to bound this expression from above and below. For sufficiently 

large m and n, there exists an integer Ω such that

Ω £ gI8a, b, c, d, e, f , g<, 8ak, ak+1, … , ak+m<, 9b j, b j+1, … , b j+n=M < Ω + 1.

Then Ω is the next partial denominator of the regular continued fraction expan�

sion of f HA, BL.

So, applying (possibly multiple times) (i) and (ii) and then (iii) repeatedly, 

allows to extract a continued fraction digit from FHA, BL. This process can be 

repeated to obtain the sequence of partial denominators 8ck<
k=0

nC .

Algorithm:HurwitzExpansion

Let z be a complex number. Then the Hurwitz continued fraction expansion

z � b0 + K
j=1

N 1

b j

(where N is possibly infinity) can be calculated through the repeated applica�

tion of the map

ΤHΖL �
1

Ζ
-

1

Ζ

through

b0 � dz

b j �
1

Τ jHzL
.

Here, dz denotes rounding to the nearest Gaussian integer.

Algorithm:JacobiPerronAlgorithm
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Given a list of d (d > 1) real numbers 8Α1, Α2, … , Αd<, the Jacobi-Perron algo�

rithm calculates a multidimensional continued fraction that simultaneously 

approximates the given real numbers.

Start setting:

Αi

H0L � Αi for 1 £ i £ d.

Define

ai

HnL � eΑi

HnLu for 1 £ i £ d - 1 and n ³ 1.

Recursively define

Α
d

HnL �
1

Α1
Hn-1L

- a1
Hn-1L

Αi

HnL � Α
d

HnL IΑi+1
Hn-1L

- ai+1
Hn-1LM for 2 £ i £ d.

Then the simultaneous approximations

Αi »
pi

HnL

q
HnL

for 1 £ i £ d

can be obtained from

An � 1d+1 ×B1 ×B2 ×… ×Bn-1

where

Bn �

0 0 … 0 1

1 0 … 0 a1
HnL

0 1 … 0 a2
HnL

» » ¸ » »

0 0 … 1 a
d

HnL

and

An �

q
Hn-dL

q
Hn-d+1L … q

Hn-1L
q

HnL

p1
Hn-dL

p1
Hn-d+1L

… p1
Hn-1L

p1
HnL

p2
Hn-dL

p2
Hn-d+1L

… p2
Hn-1L

p2
HnL

» » ¸ » »

p
d

Hn-dL
p

d

Hn-d+1L
… p

d

Hn-1L
p

d

HnL

.

If Αi

HnL
Î Z

+ for some n and i the algorithm is interrupted and continued with 

the remaining Αi

HnL
.

Algorithm:LangTrotterAlgorithm
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The Lang-Trotter algorithm is a method of finding the continued fraction 

expansion of irrational roots of certain classes of polynomials by way of con�

structing a series of related polynomials, each having a few very specific proper�

ties, the roots of which yield the partial quotients for the aforementioned 

continued fraction. Among other benefits, the Lang-Trotter algorithm has the 

boasts the ability to find the partial quotients to with full precision and no 

rounding errors due to its utilization of strictly integer arithmetic.

To begin, start with a polynomial pnHxL of degree d which has positive leading 

coefficient and a single, simple irrational root yn > 1. The process to construct 

the first related polynomial pn+1HxL is as follows. Let an � dynt denote the 

integer part of yn and note that by definition, an is the greatest integer for 

which pn HanL < 0. From this, define the polynomials Qn HxL � Pn Hx + anL and 

Pn+1 HxL � -x
d

Qn Ix-1M. Because an � dynt, it follows that Qn has a single root at 

the value yn - an Î H0, 1L. Moreover, because the root of Pn+1 is the reciprocal of 

the root of Qn, Pn+1 again has a single root yn+1 which itself is simple, irra�

tional, and greater than 1 and which has the form yn+1 � Hyn - anL-1. Also note 

that because the constant term of Qn is negative, the leading coefficient of Pn+1 

will again be positive, whereby it follows that Pn+1 has all the properties 

assumed for Pn.

Therefore, the above process can be repeated, and so beginning with a polyno�

mial P1 with the properties assumed initially, an infinite sequence 

P1 HxL, P2 HxL, …  of polynomials can be formed which all have those assumed 

properties and which have roots y1, y2, … . Subsequently, the sequence 

a1, a2, …  is the sequence of partial quotients in the continued fraction expan�

sion Ξ1 of y1 where an � dynt. Moreover, because the above process consists 

only of integer addition and multiplication, it follows that no rounding errors, 

etc., are introduced throughout so that full precision results are obtained.

Algorithm:ModifiedLentAlgorithm
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Let

Ξ � K
n=1

¥ an

bn

be a generalized continued fraction, an be the partial numerator of Ξ, bn be the 

partial denominator of Ξ, cn be a sequence, dn be a sequence, and fn be a 

sequence. Given

c0 � b0

d0 � 0

c1+n � b1+n +
a1+n

cn

d1+n �
1

b1+n +
a1+n

dn

f1+n � c1+n d1+n fn

then

Ξ � lim
n®¥

fn.

Algorithm:NearestIntegerContinuedFractionExpansion

Let Ξ be a real number. Then the nearest integer continued fraction expansion

x � ¶0 b0 + K
j=1

N ¶ j

b j

(where N is possibly infinity), ¶ j Î 8-1, 1<, and b j Î Z
+ can be calculated 

through the repeated application of the map Τ: [-1 �2, 1 �2 ® @-1 �2, 1 �2

ΤHxL �
sgnHxL

x

-
sgnHxL

x

+
1

2

ΤH0L � 0

through

b0 � x +
1

2

¶0 � sgn x +
1

2

¶ j � sgnHΤ
nHxLL

b j �
sgnHΤnHxLL

ΤnHxL
+

1

2
.

Here b j ³ 2 for n ³ 1 and b j + ¶ j+1 ³ 2 for n ³ 1.

Algorithm:OstrowskiNumberSystemIntegers
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Algorithm:OstrowskiNumberSystemIntegers

Let Ξ be the positive irrational number 0 < Ξ < 1 with regular continued fraction 

expansion

Ξ � K
j=1

¥ 1

b j

and convergents An � Bn.

For every irrational number Ξ with 0 < Ξ < 1, any integer n can be uniquely 

written as

N � â
k=1

m

ck Bk-1

where

0 £ c1 £ b1 - 1

0 £ c1 £ b1 for k ³ 2

ck � 0 if ck+1 � bk+1.

The Ostrowski digits ck can be obtained recursivley in the following manner:

1) Determine m such that Bm+1 > N.

2) Define the ck recursively starting with

cm �
N

Bm

∆m � N - cm Bm

and for k < m through

ck �
∆k+1

Bm

∆k � ∆k+1 - ck Bk.

Algorithm:PippengerContinuedFraction
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Any real number 1 £ Ξ £ 2 can be expressed as a Pippenger continued fraction

Ξ � 1 +
1

-1 + t1 1 +
1

-1+t2J1+
1

-1+t3H… L
N

where tk Î Z
+ and tk ³ 2.  Then tk can be calculated recursively as long as yk > 1 

through

y0 � Ξ

yk+1 �
zk+1

tk+1

zk+1 � 1 +
1

yk - 1

tk � dzkt.

Algorithm:ProgressiveRutishauserQD

The reciprocal of the formal power series

f HzL � â
k=0

¥

dk z
k

with ck Î C can be converted into a regular C-fraction

1

f HzL
� d0 - K

k=1

¥ ak z

1

with ak Î C \0 for k ³ 1.

Assuming the C-fraction exists, the ak are given by

ak �
d1 for k � 1

-q
k�2
H1L

for k �2 Î Z

-eHk-1L�2
H1L

for Hk - 1L �2 Î Z.

The coefficients q
k

HlL
 and e

k

HlL
 can be recursively calculated through

e0
H-1L � 0

e1
H0L �

d2

d1

q1
H0L � -

d1

d0

e
l

HkL �
q

l+1

Hk-1L

q
l

HkL
e

l

Hk-1L
for k ³ -l

q
l

HkL � q
l

Hk-1L
+ e

l

Hk-1L
- e

l-1

HkL
for k ³ -l .

Algorithm:RosenShallitAlgorithm
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Algorithm:RosenShallitAlgorithm
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The Rosen-Shallit algorithm is a procedure for identifying and computing the 

complete list of roots of a polynomial with integer coefficients. The algorithm 

itself is itself a composition of other algorithms and theorems including Uspen�

sky’s algorithm, Newton’s method, Vincent’s theorem, and others. The break�

down of the procedure is as follows.

To begin, start with a polynomial pHxL with real coefficients and let Ε > 0 be an 

error tolerance for the approximations of the irrational roots of p. The steps for 

the algorithm are:

1. Test pHxL for rational roots and their multiplicities using the rational root 

theorem. Factor them out and consider the remaining polynomial p
` HxL whose 

real roots are all irrational.

2. Use Uspensky’s algorithm to test p
` HxL for multiple roots and use the algo�

rithm to factor p
`
 so that p

` HxL � a0 X1 X2
2

º X
r

r where a0 Î R is a constant and 

where, for i � 1, 2, … , r,

Xä � Hx - b1L Hx - b2L º Ix - b jM

is a polynomial whose simple roots b1, b2, … , b j are all the roots of multiplicity 

of i of p
` HxL.

3. Use Vincent’s theorem to separate the roots bk,1, bk,2, … , bk, j of each factor 

Xk of p
`
, k � 1, 2, … , r. Using the transformation defined in the theorem, find 

for each bk, j a polynomial p
`

k, j
HxL having bk, j as its only positive root.

4. For each p
`

k, j
HxL, use Newton’s method to find an initial approximation for the 

root bk, j. Given this initial approximation, use the Lang-Trotter algorithm to 

compute the partial quotients of the approximants An � Bn of the continued 

fraction representation Ξk, j of bk, j.

5. Conclude the process at the nth approximant An � Bn whenever 1� B
n

2 < Ε.

6. Find any negative roots of pHxL by performing the above process on the 

polynomial pH-xL.

The authors make note of the fact that very little is known about the computa�

tional efficiency of their algorithm, noting only that smaller values for Ε yields 

slowing of computation; they also note that the accuracy of their output agrees 

with that of Vincent on comparable polynomials. Theoretically, the inclusion of 

the Lang-Trotter algorithm, which itself is computationally more efficient than 

other, more brute-force methods, improves both computational efficiency and 

accuracy due to the lack of roundoff error involved. Moreover, the inclusion of 

Newton’s method reduces the number of computations needed for step 4 by 

requiring each iteration to test only three integers for each polynomial’s sign 

change versus testing ym + 1 integers for the brute force alternative described in 

their paper. Here, ym is the root of the polynomial Pm formed in the mth step of 

the Lang-Trotter algorithm.

Algorithm:SchmidtExpansion
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Algorithm:SchmidtExpansion

Let Ξ be a complex number with ImHΞL ³ 0. The Schmidt continued fraction 

expansion

Ξ � M1 × M2 ×… × MN

(where N is possibly infinity) with complex 2´2 matrices 

Mk Î 8V1, V2, V3, C, E1, E2, E3< where

V1 � 1 ä

0 1

V2 � 1 0

-ä 1

V3 � 1 - ä ä

-ä 1 + ä

C � 1 -1 + ä

1 - ä ä

E1 � 1 0

1 - ä ä

E2 � 1 -1 + ä

0 ä

E3 � ä 0

0 1

can be calculated through the repeated application of the map

Τ : 88z : z Î C ì ImHzL ³ 0<, 80, 1<, 8V1, V2, V3, C, E1, E2, E3<< ®

88z : z Î C ì ImHzL ³ 0<, 80, 1<, 8V1, V2, V3, C, E1, E2, E3<<

ΤHz, ¶, ML �

9m Iz, V1
-1M, ¶, V1= H¶ � 1 ì z Î R HV1LL ê H¶ � 0 ì z Î R HV1

*LL

9m Iz, V2
-1M, ¶, V2= H¶ � 1 ì z Î R HV2LL ê H¶ � 0 ì z Î R HV2

*LL

9m Iz, V3
-1M, ¶, V3= H¶ � 1 ì z Î R HV3LL ê H¶ � 0 ì z Î R HV3

*LL

9m Iz, E1
-1M, 1 - ¶, E1= ¶ � 1 ì z Î R HE1L

9m Iz, E2
-1M, 1 - ¶, E2= ¶ � 1 ì z Î R HE2L

9m Iz, E3
-1M, 1 - ¶, E3= ¶ � 1 ì z Î R HE3L

9m Iz, C
-1M, z, 1 - ¶, C H¶ � 1 ì z Î R HCLL ê H¶ � 0 ì z Î R HC*LL

where the regions R are defined as

RHV1L � 8z : z Î C ì ImHzL ³ 1<

RHV2L � z : z Î C í z -
ä

2
£

1

2

RHV3L � z : z Î C í z - 1 +
ä

2
£

1

2

RHCL � z : z Î C í 0 < ReHzL < 1 í

1

2
< ImHzL < 1 í z -

ä

2
>

1

2
í z - 1 +

ä

2
>

1

2

RHE1L � z : z Î C í 0 < ReHzL < 1 í 0 £ ImHzL <
1

2
í

z -
ä

2
>

1

2
í z - 1 +

ä

2
>

1

2

RHE2L � z : z Î C í 0 < ReHzL > 1 í 0 £ ImHzL < 1 í z - 1 +
ä

2
>

1

2

RHE3L � z : z Î C í ReHzL < 0 í 0 £ ImHzL < 1 í z -
ä

2
>

1

2

RHV1
*L � z : z Î C í 0 £ ReHzL £ 1 í ImHzL > 1 í z -

1

2
+ ä >

1

2

RHV2
*L � z : z Î C í 0 £ ReHzL <

1

2
í

0 £ ImHzL £ 1 í z -
1

2
³

1

2
í z -

1

2
+ ä >

1

2

RHV3
*L � z : z Î C í

1

2
< ReHzL £ 1 í 0 £ ImHzL £ 1 í

z -
1

2
³

1

2
í z -

1

2
+ ä >

1

2

RHC*L � z : z Î C í z -
1

2
+ ä £

1

2

and

m z,
a11 a12

a21 a22

�
a11 z + a12

a21 z + a22

.

Let

P1Hz, ¶, ML � z

P2Hz, ¶, ML � ¶,

P3Hz, ¶, ML � M,

then the M j in the expansion of Ξ are given as

M j � P3 Τ
j

Ξ, 1,
1 0

0 1
.

Let

Ξn � M1 × M2 ×… × Mn

be the truncated expansions Hn £ NL and let

A
n

H0L
A

n

H¥L
A

n

H1L

B
n

H0L
B

n

H¥L
B

n

H1L
� Ξn ×

1 0 1

0 1 1

then the nth convergent of Ξ is the element of 9A
n

H0L � B
n

H0L, A
n

H1L � B
n

H1L, A
n

H¥L � B
n

H¥L= 

that is nearest to Ξ.
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Let Ξ be a complex number with ImHΞL ³ 0. The Schmidt continued fraction 

expansion

Ξ � M1 × M2 ×… × MN

(where N is possibly infinity) with complex 2´2 matrices 

Mk Î 8V1, V2, V3, C, E1, E2, E3< where

V1 � 1 ä

0 1

V2 � 1 0

-ä 1

V3 � 1 - ä ä

-ä 1 + ä

C � 1 -1 + ä

1 - ä ä

E1 � 1 0

1 - ä ä

E2 � 1 -1 + ä

0 ä

E3 � ä 0

0 1

can be calculated through the repeated application of the map

Τ : 88z : z Î C ì ImHzL ³ 0<, 80, 1<, 8V1, V2, V3, C, E1, E2, E3<< ®

88z : z Î C ì ImHzL ³ 0<, 80, 1<, 8V1, V2, V3, C, E1, E2, E3<<

ΤHz, ¶, ML �

9m Iz, V1
-1M, ¶, V1= H¶ � 1 ì z Î R HV1LL ê H¶ � 0 ì z Î R HV1

*LL

9m Iz, V2
-1M, ¶, V2= H¶ � 1 ì z Î R HV2LL ê H¶ � 0 ì z Î R HV2

*LL

9m Iz, V3
-1M, ¶, V3= H¶ � 1 ì z Î R HV3LL ê H¶ � 0 ì z Î R HV3

*LL

9m Iz, E1
-1M, 1 - ¶, E1= ¶ � 1 ì z Î R HE1L

9m Iz, E2
-1M, 1 - ¶, E2= ¶ � 1 ì z Î R HE2L

9m Iz, E3
-1M, 1 - ¶, E3= ¶ � 1 ì z Î R HE3L

9m Iz, C
-1M, z, 1 - ¶, C H¶ � 1 ì z Î R HCLL ê H¶ � 0 ì z Î R HC*LL

where the regions R are defined as

RHV1L � 8z : z Î C ì ImHzL ³ 1<

RHV2L � z : z Î C í z -
ä

2
£

1

2

RHV3L � z : z Î C í z - 1 +
ä

2
£

1

2

RHCL � z : z Î C í 0 < ReHzL < 1 í

1

2
< ImHzL < 1 í z -

ä

2
>

1

2
í z - 1 +

ä

2
>

1

2

RHE1L � z : z Î C í 0 < ReHzL < 1 í 0 £ ImHzL <
1

2
í

z -
ä

2
>

1

2
í z - 1 +

ä

2
>

1

2

RHE2L � z : z Î C í 0 < ReHzL > 1 í 0 £ ImHzL < 1 í z - 1 +
ä

2
>

1

2

RHE3L � z : z Î C í ReHzL < 0 í 0 £ ImHzL < 1 í z -
ä

2
>

1

2

RHV1
*L � z : z Î C í 0 £ ReHzL £ 1 í ImHzL > 1 í z -

1

2
+ ä >

1

2

RHV2
*L � z : z Î C í 0 £ ReHzL <

1

2
í

0 £ ImHzL £ 1 í z -
1

2
³

1

2
í z -

1

2
+ ä >

1

2

RHV3
*L � z : z Î C í

1

2
< ReHzL £ 1 í 0 £ ImHzL £ 1 í

z -
1

2
³

1

2
í z -

1

2
+ ä >

1

2

RHC*L � z : z Î C í z -
1

2
+ ä £

1

2

and

m z,
a11 a12

a21 a22

�
a11 z + a12

a21 z + a22

.

Let

P1Hz, ¶, ML � z

P2Hz, ¶, ML � ¶,

P3Hz, ¶, ML � M,

then the M j in the expansion of Ξ are given as

M j � P3 Τ
j

Ξ, 1,
1 0

0 1
.

Let

Ξn � M1 × M2 ×… × Mn

be the truncated expansions Hn £ NL and let

A
n

H0L
A

n

H¥L
A

n

H1L

B
n

H0L
B

n

H¥L
B

n

H1L
� Ξn ×

1 0 1

0 1 1

then the nth convergent of Ξ is the element of 9A
n

H0L � B
n

H0L, A
n

H1L � B
n

H1L, A
n

H¥L � B
n

H¥L= 

that is nearest to Ξ.

Algorithm:StandardRutishauserQD
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Algorithm:StandardRutishauserQD

The formal power series

f HzL � â
k=0

¥

ck z
k

with ck Î C can be converted into a regular C-fraction

f HzL � c0 + K
k=1

¥ ak z

1

with ak Î C \0 for k ³ 1.

Assuming the C-fraction exists, the ak are given by

ak �
c1 for k � 1

-q
k�2
H1L

for k �2 Î Z

-eHk-1L�2
H1L

for Hk - 1L �2 Î Z.

The coefficients q
k

HlL
 and e

k

HlL
 can be recursively calculated through

e0
HkL � 0 for k ³ 1

q1
HkL �

ck+1

ck

for k ³ 0

e
l

HkL � q
l

Hk+1L
- q

l

HkL
+ e

l-1

Hk+1L
for k ³ 1 and l ³ 1

q
l

HkL �
e

l-1

Hk+1L

e
l

Hk+1L
q

l-1

Hk+1L
for k ³ 1 and l ³ 2.

Algorithm:TennerAlgorithm
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Let d be a squarefree integer, x � d  be a quadratic irrational,

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of x, and an, Pn, Qn, Rn be integers. Given

P0 � 0,

Q-1 � d,

Q0 � 1,

R0 � 0,

a0 � dxt,

P1+n � dxt - Rn,

Q1+n � -Han H-Pn + P1+nLL + qH-1 + nL,

R1+n � dxt + P1+n - a1+n Q1+n

and

a1+n �
-x + P1+n

Q1+n

,

it follows that

an � bn.

Algorithm:ThieleContinuedFractionAlgorithm

The Thiele continued fraction algorithm for a function f HxL given n + 1 distinct 

points x j, j � 0, 1, 2, … , n is

RnHxL � f Hx0L + K
j=1

n x - x j

b j

where the b j are recursively defined through

b j � FAx0, x1, … , x jE

FAx jE � f Ix jM

FAx0, x1, … , x j-1, x j, x j+1E �
x j+1 - x j

FAx0, x1, … , x j-1, x j+1E - FAx0, x1, … , x j-1, x jE
.

Algorithm:UspenskyAlgorithm
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Given a polynomial pHxL, Uspensky’s algorithm is a procedure by which pHxL can 

be decomposed into the product of polynomials X1, X2
2, … , X

r

r so that for 

k � 1, 2, … , r, Xk is the product of linear factors of pHxL corresponding to roots 

of multiplicity k. More precisely, the result of performing Uspensky’s algorithm 

on a general polynomial pHxL with r multi-roots is a decomposition

p HxL � a0 X1 X2
2

º X
r

r

of pHxL where a0 Î R is a constant and where for i � 1, 2, … , r,

Xä � Hx - b1L Hx - b2L º Ix - b jM

is a polynomial whose simple roots b1, b2, … , b j are all the roots of multiplicity 

of i of pHxL. For example, given

p HxL � Hx - 1L Hx - 2L Hx - 3L2 Hx - 4L2 Hx - 5L3
,

it follows that p HxL � a0 X1 X2
2

X3
3 where a0 � 1, X1 � Hx - 1L Hx - 2L, 

X2 � Hx - 3L Hx - 4L, and X3 � x - 5. The process to compute this for general p is 

given below.

To begin, recall that p is an arbitrary polynomial with r multi-roots and define 

D1 � gcd HP, P
¢L where P¢ is the standard derivative of P. Similarly, let 

D2 � gcd HD1, D1
¢ L, D3 � gcd HD2, D2

¢ L, and for general k, 2 £ k £ r, 

Dk � gcd IDk-1, D
k-1
¢ M. Under this identification, each Dk can be expressed in 

terms of X j, 1 £ k £ r, 1 < j £ r: In particular, D1 � X2 X3
2

X4
3

º X
r

r-1, 

D2 � X3 X4
2

º X
r

r-2, and for general k, 1 £ k £ r - 1,

Dk � Xk+1 X
k+2
2

º X
r

r-k
.

It is easy to see that this identification ends with Dr-1, which is necessarily 

constant; this confirms that p has no roots whose multiplicity is greater than r.

Uspensky’s algorithm will be complete if the above information can be manipu�

lated to find explicit expressions for Xk, k � 1, 2, … , r. To that end, consider 

defining a sequence P1, … , Pr of polynomials by way of the following recursive 

formula: P1 � P � D1 � X1 X2 º Xr, P2 � D1 � D2 � X2 X3 º Xr, and for general k, 

1 £ k £ r, Pk � Dk-1 � Dk � Xk Xk+1 º Xr. In particular, this implies 

Pr � Dr-1 � Dr � Xr. Having created the sequence P1, P2, … , Pr, explicit expres�

sions for Xk, k � 1, 2, … , r, can be isolated: X1 � P1 � P2, X2 � P2 � P3, and for 

general k, 1 £ k £ r, Xk � Pk � Pk+1. Using the above definitions, it is easily con�

firmed each root of each Xk, 1 £ k £ r, has multiplicity k, whereby the factoriza�

tion (and hence the algorithm) is complete.

Algorithm:ViskovatovMethod
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The expression

f �
Ú

k=0

n

f1,k x
k

Ú
k=0

n

f0,k x
k

has the equivalent continued fraction (C-fraction) expansion

f ~
f1,0

f0,0 + K
k=1

¥
dk,0 x

dk-1,0

,

where

dk,i � dk-2, j+1 dk-1,0 - dk-1, j+1 dk-2,0

d0,k � f0,k

d1,k � f1,k

assuming that no relevant coefficients vanish.

The algorithm is based on the recursive application of the identity

Ú
k=0

¥

ak x
k

Ú
k=0

¥

bk x
k

�
a0

b0

+
x

Ú
k=0

¥

bk x
k

Ú
k=0

¥

Jak+1-
a0

b0

bk+1N x
k

�
a0

b0

+
x

Ú
k=0

¥

a
�

k x
k

Ú
k=0

¥

b

�

k x
k

.

AlmostEverywhereIntegralFormOfExtendedGaussMapValue

s

Let Τ be the natural extension of the Gauss map

Τ : H0, 1L ´ @0, 1D ® R
2

ΤHx, ΘL � ΤHxL,
1

b1HxL + Θ

where Τ(x) is the Gauss map

ΤHxL �
1

x

-
1

x

and b1HxL � ΤHΤHxLL.

Then for any measureable function f  from @0, 1D ´ @0, 1D ® R
2 the following 

identity holds:

lim
n®¥

1

n
â
k=0

n-1

f HΤ
nL �

1

lnH2L
à

0

1

à
0

1 f Hx, yL

H1 + x yL2
â x â y.

ApproximantDifferenceForRegularContinuedFractionsWith

ConstantPartialQuotients

Results.nb    29



ApproximantDifferenceForRegularContinuedFractionsWith

ConstantPartialQuotients

Given a regular continued fraction

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, for all n > 1 and n - 1 ³ r ³ 2,

An

Bn

-
An-r

Bn-r

�
H-1L1+n+r Ú

i=0

dHr-1L�2t r - 1 - i

i
a

r-1-2 i

Bn Bn-r

.

ApproximantsToIrrationalsViaFastContinuedFractionAlgorit

hm

Let Α > 0 be an irrational number and let s0, s1, s2, …  be the output values from 

the fast continued fraction algorithm with respect to Α. Then Α can be 

expressed as a continued fraction Ξ of the form

Ξ � s0 +
1

s1 +
1

s2+
1

¸+
1

s
n-1

+

1

Γn

,

where Γn > 1 is an irrational selected to make the equality hold. What is more, 

if Γn is replaced by sn, the fraction chain becomes a rational number pn �qn and 

for each n � 1, 2, … , these pn �qn are the terms in the fast continued fraction 

algorithm for Α; for n even, pn �qn � a �b is a left approximation and if n is odd, 

pn �qn � c �d is a right approximation.

ApproximateHausdorffDimensionForContinuedFractionsWi

thPartialDenominatorsBoundedType
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Let A be a set of natural numbers, CHAL be regular continued fractions whose 

partial denominators are in A, H be the Hausdorff dimension, and Rn be natural 

numbers less than or equal to n.  Then HHCH81, 4, 7<LL »
2589

50 000
, 

HHCH81, 2<LL »
166

3125
, HHCH81, 3, 8<LL »

2719

50 000
, HHCH81, 3, 7<LL »

1383

25 000
, 

HHCH81, 3, 6<LL »
1413

25 000
, HHCH81, 3, 5<LL »

5813

100 000
, HHCH81, 2, 10<LL »

5951

100 000
, 

HHCH81, 3, 4<LL »
3021

50 000
, HHCH81, 2, 7<LL »

6179

100 000
, HHCH81, 2, 7, 40<LL »

1253

20 000
, 

HHCH81, 2, 5<LL »
323

5000
, HHCH81, 2, 5, 40<LL »

1633

25 000
, HHCH81, 2, 4<LL »

1673

25 000
, 

HHCH81, 2, 4, 40<LL »
3377

50 000
, HHCH81, 2, 4, 15<LL »

6899

100 000
, HHCH81, 2, 3<LL »

441

6250
, 

HHCH81, 2, 4, 7<LL »
1437

20 000
, HHCH81, 2, 4, 6<LL »

291

4000
, HHCH81, 2, 4, 5<LL »

37

500
, 

HHCH81, 2, 3, 6<LL »
1897

25 000
, HHCH81, 2, 3, 5<LL »

7709

100 000
, HHCH81, 2, 3, 4<LL »

7889

100 000
, 

HHCH81, 2, 3, 4, 10<LL »
8081

100 000
, HHCH81, 2, 3, 4, 6<LL »

8269

100 000
, 

HHCH81, 2, 3, 4, 5<LL »
523

6250
, HHCH81, 2, 3, 4, 5, 9<LL »

8541

100 000
, 

HHCH81, 2, 3, 4, 5, 7<LL »
1077

12 500
, HHCH81, 2, 3, 4, 5, 6<LL »

2169

25 000
, 

HHCH81, 2, 3, 4, 5, 6, 8<LL »
8851

100 000
, HHCH81, 2, 3, 4, 5, 6, 7<LL »

8889

100 000
, 

HHCHR8LL »
1809

20 000
, HHCHR9LL »

2291

25 000
, HHCHR10LL »

9257

100 000
, HHCHR13LL »

1889

20 000
, 

HHCHR18LL »
961

10 000
, and HHCHR34LL »

49

500
.

ApproximationCoefficientDifferenceDistribution

Let Ξ be an irrational number with regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

Qn � B
n

2
Ξ -

An

Bn

,

and a Î Z
+. Then for almost all Ξ Î @0, a � H1 + aLD with bn � a the density func�

tion for the distribution of  Qn+1 - Qn-1¤ is

pHzL �
1

lnH2L

1

a

ln
2 + a

a

+
1

a

ln
a - z

a + z

.

ApproximationCoefficientDistributions
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Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

and An � Bn the sequence of its convergents. Let QnHΞL be the approximation 

coefficients

QnHΞL � B
n

2
Ξ -

An

Bn

.

Then, as n ® ¥, the following holds with respect to the Lebesgue measure Λ on 

@0, 1D:

lim
n®¥

ΛHQkHΞL < tL �
t

lnH2L
for 0 £ t £ 1 �2

1

ln H2L
H1 - t + ln H2 tLL for 1 �2 £ t £ 1

lim
n®¥

ΛHQk-1HΞL < s ì QkHΞL < tL �
1

lnH2L
1

1-4 s t

for 0 £ s ì 0 £ t ì s + t < 1

0 otherwise

lim
n®¥

Λ

Qk+1HΞL

B
k+1
2

QkHΞL

B
k

2

< t �
1

lnH2L
JlnHt + 1L -

t lnHtL
t+1

N for 0 £ t £ 1

0 otherwise

lim
n®¥

Λ
Bk+1

Bk

QkHΞL < t �
0 for 0 £ t £ 1 �2

1

ln H2L
ln I2 t

t H1 - tL1-tM otherwise.

ApproximationCoefficientsRecursion1

Let Ξ be the the regular continued fraction

Ξ � b0 + K
j=1

M 1

b j

with M £ ¥, convergents An � Bn, and approximation coefficients

Θn � B
n

2
Ξ -

An

Bn

.

Then the following recursion relation holds for n > 1:

Θn+1 � Θn-1 + bn+1 1 - Θn-1 Θn - b
n

2
Θn.

ApproximationCoefficientsRecursion2
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Let Ξ be the the regular continued fraction

Ξ � b0 + K
j=1

M 1

b j

with M £ ¥, convergents An � Bn, and approximation coefficients

Θn � B
n

2
Ξ -

An

Bn

.

Then the following recursion relations hold for n > 1:

Θn+1 � Θn-1 + 1 - 4 Θn-1 Θn

1 - 4 Θn-1 Θn + 1

2 Θn

- Θn

1 - 4 Θn-1 Θn + 1

2 Θn

2

.

ApproximationCoefficientSum

Let Ξ be an irrational number with regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

.

with convergents An � Bn.  Let

Qn � B
n

2
Ξ -

An

Bn

.

Then for almost all Ξ Î R,

lim
N®¥

1

N
â
n=3

N

 Qn+1 - Qn-1¤ �
2 ý + 1 - ln H2 ΠL

2 lnH2L
.

ApproximationCoefficientSums
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Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

and An � Bn the sequence of its convergents. Let QnHΞL be the approximation 

coefficients

QnHΞL � B
n

2
Ξ -

An

Bn

.

Then the following identities hold for almost all Ξ:

lim
n®¥

1

n
â
k=0

n-1

QkHΞL �
1

4 lnH2L

lim
n®¥

1

n
â
k=0

n-1

QkHΞL Qk+1HΞL �
1

6
1 -

1

4 lnH2L

lim
n®¥

1

n
â
k=0

n-1
Bk+1

Bk

QkHΞL �
1

2
+

1

4 lnH2L

lim
n®¥

1

n
â
k=0

n-1
Qk+1HΞL

B
k+1
2

QkHΞL

B
k

2

�
Π2

12 lnH2L
.

ApproximationCoefficientTVSequenceDistribution

Let Ξ be an irrational number with regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

tn � K
k=n

¥ 1

bk

and

vn � K
k=1

n 1

bn+1-k

.

For almost all x, the sequence 8tn, vn< is distributed according to the density 

function

ΜHt, vL �
1

lnH2L

1

H1 + t vL2
.

AroianContinuedFraction
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AroianContinuedFraction

Let p and q be real numbers and

cn �

1 for n � 0

Hp+sL H-p-q-sL

Hp+2 sL Hp+2 s+1L
for n � 2 s + 1

s Hq-sL

Hp+2 s-1L Hp+2 sL
for n � 2 s

Cn � x cn

and

Ξ � K
n=1

¥ 1

Cn

.

Then

BxHp, qL

BHp, qL
�

Ξ x
p H1 - xLq GHp + qL

GHp + 1L GHqL
.

ArwinFormula

Given a real root Μ to

0 � b2 Μ
2

+ b1 Μ + b0,

Pp a solution to

0 � Ib2 P
p

2
+ b1 I-PpM + b0M mod Qp,

and integers Pp, Qp, Qt, zx, zx-1, yx, yx-1, Α, Β, and Γ satisfying

gcdHΑ, ΒL � 1

gcdHzx, QtL � 1

Μ + Pp

Qp

�
yx IΑ Μ2 + Β Μ + ΓM + yx-1

zx IΑ Μ2 + Β Μ + ΓM + zx-1

 yx zx-1 - yx-1 zx¤ � 1,

and let

A2 �
b2

b0

A3 �
b3

b0

.

Then

¡Α3
A3 + Α

2
A2 Β + Β

6¥ � ¡Qp Qt¥.

AssociatedContinuedFractionTo2SeriesForGoldenRatio
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AssociatedContinuedFractionTo2SeriesForGoldenRatio

Set

THxL � â
i=1

¥

2
di xt

and

tn � 2
Fn-2.

Then THΦL is a transcendental real and has as its regular continued fraction

Ξ � K
k=1

¥ 1

tk

.

AsymptoticBehaviorForFunctionsOfPartialQuotients

Let Ε > 0 and suppose that g is a function which behaves asymptotically like 

p
1-Ε, i.e., g HpL � O Ip1-ΕM, i.e., gHpL. If Ξ � @0; b1, b2, … D is a continued fraction, 

then

lim
K®¥

1

K
â
n�1

K

gHbnL � â
p�1

¥

gHpL log
2

Hp + 1L2

pHp + 2L
.

In particular, if g HpL � ∆p,q for some q, then

fq � log
2

Hq + 1L2

qHq + 2L
,

where fq � limK®¥ Nq HKL � K for NqHKL the number of times the digit q occurs in 

the first K terms of Ξ.

AsymptoticBoundForDiscrepancyOfCertainContinuedFracti

onRelatedSequences
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Consider the closed hypocycloid S of q cusps whose parameterized form is 

given by

SHtL �
xHtL � HΘ - 1L r cosHtL + r cosHHΘ - 1L tL
y HtL � HΘ - 1L r sin HtL + r sin HHΘ - 1L tL

for 0 < Θ � p �q < 1 and let 8S<t denote the trace of S on the interval 

It � @0, 2 Π t p �qD, that is, 8S<t is the partially completed plot of S on It. Further, 

let Ω � 9fracHn ΘLt=
n�1

dtt
 where fracHn ΘLt denotes the finite portion of the fractional 

part of Hn ΘL corresponding to 8S<t. Under this construction, if Ξ
n

t  is the continued 

fraction representation of Hn ΘLt for n � 1, 2, …  and if Ξ
n

t  has bounded partial 

quotients, then the discrepancy DNHΩL satisfies the asymptotic expression 

DN HΩL � O IN-1 ln NM. Moreover, if Ξ
n

t  has partial quotients bounded by some K, 

then

N DN HΩL £ 3 +
1

lnHΦL
+

K

lnHK + 1L
lnHNL.

AsymptoticConvergentBehaviorOfLimitPeriodicContinuedF

ractions

For a limit periodic continued fraction Ξ � KHbn �1L � @0; b1, b2, … D with 

 bn - H-1 �4L¤ £
1- Β2

4 I4 n
2-1M

, 0 £ Β £ 1, n � 1, 2, … ,

hn

hn -
1

2

£
2 n + 2 + Β

1Β

for n � 1, 2, …  where hn � -S
n

-1 H¥L, Sn H0L � An � Bn is the nth approximant of Ξ, 

and approximant function Sn HwL � An+An-1 w

Bn+Bn-1 w
.

AsymptoticDigitSumDistribution
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Let the number 0 < x < 1 have the regular continued fraction expansion

x � K
k=1

¥ 1

bk

and let SrHxL be the digit sums of the truncated partial denominator sequences

SrHxL � K
k=1

r

bk.

Furthermore, let ΦHΞL be the stable distribution with density

ΦHΞL � PDF StableDistribution 0, 1, 1, ln
Π

2
,

Π

2
, Ξ

and Μ the ordinary Lebesgue measure on the real line. Then

lim
r®¥

sup
zÎR

mH8x : x Î H0, 1L ì SrHzL £ z<L - à
-¥

z lnH2L�r+ý-lnHr�lnH2LL
ΦHΞL â Ξ .

AsymptoticDistributionOfCoefficientsForIrrationalContinue

dFractions

Let Ξ � @0; b1, b2, … D be the continued fraction representation of an irrational 

number Α Î H0, 1L, let NpHKL be the number of times the digit p occurs in the 

first K terms of Ξ, and let fp � limK®¥ Np HKL � K if it exists. Then with probability 

1, the coefficients b j of Ξ are distributed asymptotically and

fp � log
2

Hp + 1L2

pHp + 2L
.

AsymptoticModularPropertiesOfDigits

Let 0 < Ξ < 1 be an irrational number with the regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then for any m Î Z
+, 1 £ j £ m - 1, the following identity holds for almost all Ξ

lim
n®¥

1

n
â
k=1

n

∆kk mod m, j �
1

lnH2L
ln

GJ
j

m
N GJ

j+2

m
N

GJ
j+1

m
N
2

.

AsymptoticRelativeDigitFrequency
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AsymptoticRelativeDigitFrequency

Let Ξ be an irrational number with the regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then for any j Î Z
+, the following identity holds for almost all Ξ

lim
n®¥

1

n
â
k=1

n

∆ j,bk
�

1

lnH2L
ln 1 +

1

jH j + 2L
.

AsymptoticRelativeDigitFrequencyWithErrorTerm

Let Ξ be an irrational number with the regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then for any j Î Z
+ and any ¶ > 0, the following identity holds for almost all Ξ;

lim
n®¥

1

n
â
k=1

n

∆ j,bk
�

1

lnH2L
ln 1 +

1

jH j + 2L
+ o

1

n

ln
3HnL .

AsymptoticRelativeDigitRangeFrequency

Let Ξ be an irrational number with the regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then for any j1, j2 Î Z
+ with j1 £ j2, the following identity holds for almost all 

Ξ:

lim
n®¥

1

n
â
k=1

n

Boole@ j1 £ k £ j2D �
1

lnH2L
ln

H j1 + 1L H j2 + 1L

j1H j2 + 2L
.

AsymptoticRelativeExceedingDigitFrequency
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Let 0 < Ξ < 1 be an irrational number with the regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then for any j Î Z
+, the following identity holds for almost all Ξ

lim
n®¥

1

n
â
k=1

n

Boole@bk > jD �
1

lnH2L
ln 1 +

1

j

.

AsymptoticsForHausdorffDimensionForBoundedPartialQuo

tients

Let n be a natural number, E be a subset of the natural numbers less than or 

equal to n, EHRL be the regular continued fractions Ξ whose partial denomina�

tors lie in E, and H be the Hausdorff dimension. Then

HHEHRLL � 1 -
6

n Π2
-

72 lnHnL

n
2 Π4

+ O

1

n
2

.

AuricTheorem

Let

Ξ � K
n=1

¥ an

bn

be a generalized continued fraction where an ¹ 0, and Xn be the three term 

recurrence solution continued fraction of Ξ.  Given Xn ¹ 0 and

ä
n=0

¥
Û

m=1

n

-an

X-1+n Xn

� ¥,

then Ξ converges to

-
X0

X-1

.

AverageContinuedFractionLengthOfARational
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Let q be an integer and for rational numbers 0 < p �q < 1, gcdHp, qL � 1 and let

p

q

� K
k=1

LJ
p

q
N

1

bk

be its regular continued fraction expansion.

Then the following limit for the average length of a continued fraction of a 

proper fraction with denominator q holds:

lim
q®¥

1

ΦHqL
â
p=1

gcdHp,qL=1

q-1

L

p

q

�
12 lnH2L

Π2
lnHqL + CP + O

1

q
1�6+¶

where ¶ > 0 and

CP �
12 lnH2L

2 Π2
H48 lnHAL - 2 - lnH2L - 4 lnHΠLL -

1

2
.

AverageGrowthOfHalfRegularContinuedFractionConvergen

tsDenominators

Let

Ξ � K
k=1

¥ ¶k

Βk

be a half-regular continued fraction expansion and An � Bn the sequence of its 

convergents. Here -1 �2 < Ξ < 1 �2 and Ξ Ï Q and ¶k Î 8-1, 1<, Βk Î Z
+, Βk ³ 2 

and Βk + ¶k+1 ³ 2, ¶1 � sgnHΞL,   Β1 - 1 �  Ξ¤¤ < 1 �2.

Then for almost all -1 �2 < Ξ < 1 �2, the following holds:

lim
n®¥

lnHBnL

n

�
Π2

lnHΦL
.

AverageOfIteratedGaussMap
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Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

Then for any Borel subset A of the interval @0, 1D

lim
n®¥

1

n
â
k=0

n-1

IAHΤ
nL �

1

lnH2L
à

0

1 IAHxL

1 + x

â x.

where IAHxL is the indicator function of the set A.

AverageOfIteratedHalfRegularGaussMap

Let Τ be the Gauss map equivalent for half-regular continued fraction expansion

Ξ � K
k=1

¥ ¶k

Βk

where -1 �2 < Ξ < 1 �2 and Ξ Ï Q and ¶k Î 8-1, 1<, Βk Î Z
+, Βk ³ 2 and 

Βk + ¶k+1 ³ 2, ¶1 � sgnHΞL,   Β1 - 1 �  Ξ¤¤ < 1 �2 defined as

ΤHΞL � K
k=2

¥ ¶k

Βk

.

Then for every Lebesgue-measurable function f  and for almost all 

-1 �2 < Ξ < 1 �2 the following holds:

lim
n®¥

1

n
â
k=0

n-1

f HΤ
nHΞLL �

1

lnHΦL
à

-1�2

1�2
f HΣL

1

Φ+t
for Σ < 0

1

Φ+1+t
for Σ > 0

â Σ.

BadlyApproximableNumbersHavePoorRationalApproximati

ons

Let Ξ be a regular continued fraction, Ε be a positive real, and x be a rational 

number p �q.  Then $Ε "x  -x + Ξ¤ ³ Ε �q
2 Í Ξ is badly approximable.

BakerBoundForUniformConvergenceOfHolomorphicPadeA

pproximants

42     Results.nb



Let U be a disk, r be the disk radius of U, f HzL be a formal power series that 

converges on U, fnHzL be the Padé  approximants diagonal for f  at 0, and Vn be 

the complex poles set for fnHzL in U. Then given Vn � Æ, the sequence fn con�

verges uniformly on U.

BankierGeneralizationOfGaloisTheoremOnPurePeriodCont

inuedFractions

Let Ξ1 be a continued fraction with periodic partial numerators and 

denominators

Ξ1 � b0 + K
k=1

¥ ak

bk

ak+n � an

bk+n � bn.

Let Ξ2 be the continued fraction with periodic partial numerators and 

denominators

Ξ2 � K
k=1

¥ an-k+1

bn-k

where Ξ1 and Ξ2 converge and an¹0, then

Ξ2 � -z0

where z0 is the conjugate of Ξ1 as quadratic expressions.

BaseComplementContinuedFractions
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Let p1 �q1 and p2 �q2 be two rational number (p1, q1, p1, q1 Î Z
+) with regular 

continued fraction expansions

p1

q1

� b0
H1L

+ K
k=1

n
H1L

1

b
k

H1L

p2

q2

� b0
H2L

+ K
k=1

n
H2L

1

b
k

H2L
,

and let A
n

H1L � B
n

H1L and A
n

H2L � B
n

H2L be their convergents sequences. Define the 

fraction

Ξ �
A

n
H2L-1

H2L
p1 + p2 q1

B
n

H2L-1

H2L
p1 + q2 q1

with regular continued fraction expansion

Ξ � b0

HΞL
+ K

k=1

n
HΞL

1

b
k

HΞL

and convergents An

HΞL
� Bn

HΞL
. Then the following identity holds:

A
n

HΞL-1

HΞL

B
n

HΞL-1

HΞL
�

A
n

H2L-1

H2L
A

n
H1L-1

H1L
+ p2 B

n
H1L-1

H1L

B
n

H2L-1

H2L
A

n
H1L-1

H1L
+ q2 B

n
H1L-1

H1L
.

BasicPropertiesOfContinuants

The continuants KnHx1, x2, … , xnL have the following properties:

KnH1, … , 1L � Fn+1

KnHx1, … , xn + yL � KnHx1, … , xnL + y Kn-1Hx1, … , xn-1L

KnHx1, … , xnL Kn-2Hx2, … , xn-1L - Kn-1Hx2, … , xnL KnHx1, … , xn-1L � H-1Ln

Km+nHx1, … , xm+nL KlHxm+1, … , xm+lL - Km+lHx1, … , xm+1L KnHxm+1, … , xm+1L �
H-1Ln

Km-1Hx1, … , xm-1L Kn-l-1Hxm+l+2, … , xm+nL

If a real number Ξ has the regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

,

then

Ξ �
Kn+1Hb0, b1, … , bnL

KnHb1, … , bnL
.

BasicPropertiesOfRegularContinuedFractionConvergents

Let Ξ be a real number with regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

.

(M possibly ¥ for irrational numbers) with convergents An � Bn. The conver�

gents have the following properties:

Recurrences:

An � bn An-1 - An-2 where A-1 � 1 and A0 � b0

Bn � bn Bn-1 - Bn-2 where B-1 � 0 and B0 � 1

Identities:

An

Bn

-
An+1

Bn+1

� -
H-1Ln-1

Bn-1 Bn

Ξ � b0 + â
n=0

¥ 1

Bn Bn+1

Ξ � b0 + K
k=1

M 1

∆M,k ΞM + I1 - ∆M,kM bk

,

where

ΞM � bM + K
k=1

¥
1

bM+k

,

gcdHAn-1, AnL � 1,

and

gcd HBn-1, BnL � 1.

Bounds:

An £ Fn and Bn £ Fn+1

A2 n

B2 n

< Ξ <
A2 n+1

B2 n+1

1

2 Bn

<  Ξ Bn - An¤ £
1

Bn

An

Bn

� Ξ + H-1Ln-1
 ∆¤

B
n

2
,

where

1

bn+1 + 2
<  ∆¤ <

1

bn+1

.

Bounds on differences:

Ξ -
An

Bn

> Ξ -
An+1

Bn+1

1

BnHBn+1 + BnL
< Ξ -

An

Bn

<
1

Bn Bn+1

Ξ -
An

Bn

<
1

2 B
n

2

Ξ -
An

Bn

<
1

Fn+1 Fn+2

Ξ -
An

Bn

<
1

Φ2 n-1

Ξ -
An

Bn

<
1

I 2 M
n

Ξ -
An

Bn

£ Ξ -
A

B

for all A Î Z
+, B Î Z

+ and 0 £ B £ Bn.
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Let Ξ be a real number with regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

.

(M possibly ¥ for irrational numbers) with convergents An � Bn. The conver�

gents have the following properties:

Recurrences:

An � bn An-1 - An-2 where A-1 � 1 and A0 � b0

Bn � bn Bn-1 - Bn-2 where B-1 � 0 and B0 � 1

Identities:

An

Bn

-
An+1

Bn+1

� -
H-1Ln-1

Bn-1 Bn

Ξ � b0 + â
n=0

¥ 1

Bn Bn+1

Ξ � b0 + K
k=1

M 1

∆M,k ΞM + I1 - ∆M,kM bk

,

where

ΞM � bM + K
k=1

¥
1

bM+k

,

gcdHAn-1, AnL � 1,

and

gcd HBn-1, BnL � 1.

Bounds:

An £ Fn and Bn £ Fn+1

A2 n

B2 n

< Ξ <
A2 n+1

B2 n+1

1

2 Bn

<  Ξ Bn - An¤ £
1

Bn

An

Bn

� Ξ + H-1Ln-1
 ∆¤

B
n

2
,

where

1

bn+1 + 2
<  ∆¤ <

1

bn+1

.

Bounds on differences:

Ξ -
An

Bn

> Ξ -
An+1

Bn+1

1

BnHBn+1 + BnL
< Ξ -

An

Bn

<
1

Bn Bn+1

Ξ -
An

Bn

<
1

2 B
n

2

Ξ -
An

Bn

<
1

Fn+1 Fn+2

Ξ -
An

Bn

<
1

Φ2 n-1

Ξ -
An

Bn

<
1

I 2 M
n

Ξ -
An

Bn

£ Ξ -
A

B

for all A Î Z
+, B Î Z

+ and 0 £ B £ Bn.

Results.nb    45



Let Ξ be a real number with regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

.

(M possibly ¥ for irrational numbers) with convergents An � Bn. The conver�

gents have the following properties:

Recurrences:

An � bn An-1 - An-2 where A-1 � 1 and A0 � b0

Bn � bn Bn-1 - Bn-2 where B-1 � 0 and B0 � 1

Identities:

An

Bn

-
An+1

Bn+1

� -
H-1Ln-1

Bn-1 Bn

Ξ � b0 + â
n=0

¥ 1

Bn Bn+1

Ξ � b0 + K
k=1

M 1

∆M,k ΞM + I1 - ∆M,kM bk

,

where

ΞM � bM + K
k=1

¥
1

bM+k

,

gcdHAn-1, AnL � 1,

and

gcd HBn-1, BnL � 1.

Bounds:

An £ Fn and Bn £ Fn+1

A2 n

B2 n

< Ξ <
A2 n+1

B2 n+1

1

2 Bn

<  Ξ Bn - An¤ £
1

Bn

An

Bn

� Ξ + H-1Ln-1
 ∆¤

B
n

2
,

where

1

bn+1 + 2
<  ∆¤ <

1

bn+1

.

Bounds on differences:

Ξ -
An

Bn

> Ξ -
An+1

Bn+1

1

BnHBn+1 + BnL
< Ξ -

An

Bn

<
1

Bn Bn+1

Ξ -
An

Bn

<
1

2 B
n

2

Ξ -
An

Bn

<
1

Fn+1 Fn+2

Ξ -
An

Bn

<
1

Φ2 n-1

Ξ -
An

Bn

<
1

I 2 M
n

Ξ -
An

Bn

£ Ξ -
A

B

for all A Î Z
+, B Î Z

+ and 0 £ B £ Bn.

BauerMuirTransformation

Given a sequence w � 8wn< of complex numbers, the Bauer-Muir transformation 

of a generalized continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

with respect to w is the continued fraction Ζ of the form

Ζ � d0 + K
m=1

¥ cm

dm

whose canonical numerators Cn, respectively canonical denominators Dn, are 

defined by the recursion relations C-1 � 1, Cn � An + wn An-1, D-1 � 0, and 

Dn � Bn + wn Bn-1 for n � 1, 2, 3, … . Here, An � Bn denotes the canonical nth 

convergents of Ξ.

One well-know result concerning the Bauer-Muir transformation is a characteri�

zation of its existence. In particular, given a generalized continued fraction Ξ of 

the form stated above and a corresponding complex sequence w � 8wn<, the 

Bauer-Muir transformation of Ξ with respect to w exists if and only if Λn ¹ 0 

where here,

Λn � an - wn Hbn + wnL

for n � 1, 2, 3, … . Moreover, Lorentzen and Waadeland showed that if it exists, 

the Bauer-Muir transformation of Ξ with respect to w has the form

Ζ � b0 + w0 +
Λ1

b1 + w1 +
c2

d2+
c3

d3+º

where cn � an-1 qn-1 and dn � bn + wn - wn-2 qn-1 for qn � Λn+1 � Λn, 

n � 1, 2, 3, … . More specific properties of the Bauer-Muir transformation have 

also been studied in relation to various other topics including but not limited to 

the Rogers-Ramanujan continued fraction.

BestLeftApproximation
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BestLeftApproximation

Let Α be an irrational number in H0, 1L. Then a fraction p �q is called a best left 

approximation to Α if (i) p �q < Α and (ii) there is no fraction x � y Î Hp �q, ΑL 

with a denominator y £ q.

BestRationalApproximation

A fraction p �q is called a best rational approximation of the real number Ξ if

Ξ -
p

q

< Ξ -
r

s

for any integers r and s such that s £ q and p �q ¹ r � s.

Let Ξ have the regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

(for M possibly ¥) with convergents An � Bn.

Then every convergent An � Bn is best rational approximation of Ξ.

BestRationalApproximationTheorem

Let

Ξ � b0 + K
n=1

N 1

bn

be a regular continued fraction with value Ξ and convergents An � Bn, and let p 

and q be two positive integers such that

Ξ -
p

q

£ Ξ -
An

Bn

.

Then q ³ Bn.  Moreover, if q � Bn, then p � An.

BestRightApproximation
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Let Α be an irrational number in H0, 1L. Then a fraction p �q is called a best right 

approximation to Α if (i) p �q > Α and (ii) there is no fraction x � y Î HΑ, p �qL 

with a denominator y ³ q.

BijectionFromPowerSetOfNaturalNumbersToPositiveReals

ViaContinuedFractions

Define f  to be the function from the powerset of the natural numbers to the 

nonnegative real numbers by

f HAL �

0 for A � Æ

n for A � 8n<

a1 + K
k=1

m

1

ak+1-ak+∆Hk-mL
for  A¤ � m

a1 + K
k=1

¥
1

ak+1-ak

for  A¤ � ¥.

Then f  is a bijection between the powerset of the natural numbers and the 

nonnegative real numbers.

BinaryQuadraticFormRepresentationOfNegative1

Let D be a positive integer that is not a perfect square, let x2 - D y
2 represent 

-1, let

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction expansion of D , and let Pn �Qn be the nth 

complete quotient of Ξ.  Then

D � Q
n

2
+ P

n

2
,

where Qn is odd, and

gcdHPn, QnL � 1.

BinaryQuadraticFormRepresentationOfPlusOrMinusb
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Let D be a positive integer that is not a perfect square, let x2 - D y
2 represent 

-1, let

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction expansion of D , let Pn �Qn be the nth com�

plete quotient of Ξ, and let An � Bn be the nth convergent.  If

HT1, U1L � HAn-1 - An-2, Bn-1 - Bn-2L

then

T1
2

- D U1
2 � H-1Ln

2 Pn.

Similarly, if

HT2, U2L � HAn-1 + An-2, Bn-1 + Bn-2L

then

T2
2

- D U2
2 � H-1Ln-1

2 Pn.

Finally,

gcdHT1, U1L � gcdHT2, U2L � 1.

BlockComplexityAsymptoticForContinuedFractionsOfAlgeb

raics

Let Α be an algebraic number where 0 < Α < 1,

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of Α, and pHn, bnL be its block complexity. 

Then given that bn is not ultimately periodic, it follows that 

limn®¥ pHn, bnL �n � ¥.

BlockComplexityBoundForContinuedFractionsOfAlgebraics

Let Α be an algebraic number where 0 < Α < 1,

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of Α, and pHn, bnL be its block complexity. 

Then given that bn is not ultimately periodic, it follows that pHn, bnL ³ n + 1.

BohmerFormula
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BohmerFormula

Given a regular continued fraction

Α � K
n=1

¥ 1

bn

with convergents An � Bn and an integer c > 1, then the continued fraction for 

the approximant function

SbHΑL � K
n=1

¥ 1

tn

is given by

tn �
b0 c for n � 0

c
Bn -c

Bn-2

c
Bn-1 -1

otherwise.

BoundedBranchedFractionsWithNaturalElementsConverge

Any bounded branched fraction with natural elements converges.

BoundedPartialQuotientsForContinuedFractionForBaumSer

ies

Let K � FIx-1M � F2Ix-1M be the formal power series in 1 � x with coefficients in 

the field of two elements.  Given f  in K with Ξ its regular continued fraction 

and bn its partial denominators where

f
3

+
f

x

+ 1 � 0,

then degHbnL £ 2.

BoundsOfErrorSumFunctionsOfContinuedFractions

Let Α be an irrational number where 0 £ Α £ 1, Ξ be the regular continued 

fraction of Α, EHΑL be the absolute error sum function of Ξ, and E*HΑL be the 

error sum function of Ξ. Then EHΑL £ Φ and E*HΑL £ 1.

BoundsOnContinuedFractionApproximants
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Let Α Î R be an arbitrary real number with associated continued fraction Ξ and 

let Pn �Qn denote the nth convergent of Ξ for n � 1, 2, … . Then

Α -
Pn

Qn

<
1

Qn Qn+1

<
1

Q
n

2

for all n.

BranchedContinuedFraction

A branched continued fraction is an expression of the form

Ξ � b0 + â
i1=1

N ai1

bi1
+ Ú

i2=1

N
ai1,i2

ni1,i2
+ Ú

i3=1

N ai
1

,i
2

,i
3

bi
1

,i
2

,i
3

+…

.

BranchedContinuedFraction:BoundedBranching

A branched continued fraction X of the form

X � b + â
i1�1

N ai1

bi1
+ Ú

i2�1

Ni1 ai1 i2

bi1 i2 i3
+ Ú

i3�1

Ni
1

i
2 ai

1
i
2

i
3

º

is said to have bounded branching if the branching numbers N, Ni1 i2 … ik
 of X 

are all bounded by one number.

BranchedContinuedFraction:BranchedFractionWithNaturalE

lements

Given a branched continued fraction X of the form

X � b + â
i1�1

N ai1

bi1
+ Ú

i2�1

Ni1 ai1 i2

bi1 i2 i3
+ Ú

i3�1

Ni
1

i
2 ai

1
i
2

i
3

º

,

the numbers ai1 i2 … ik
, b, and bi1 i2 … ik

 are called the elements of X. If all elements 

except for possibly b are natural numbers, X is said to be a branched fraction 

with natural elements.

BranchedContinuedFraction:Convergence
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BranchedContinuedFraction:Convergence

For any branching fraction X of the form

X � b + â
i1�1

N ai1

bi1
+ Ú

i2�1

Ni1 ai1 i2

bi1 i2 i3
+ Ú

i3�1

Ni
1

i
2 ai

1
i
2

i
3

º

,

one can construct so-called convergent fractions Xm of the form

Xm � b + â
i1�1

N ai1

bi1
+ Ú

i2�1

Ni1

a
i
1

i
2

¸

bi
1

i
2

… i
m-1

+ Ú
im�1

N
i
1

i
2

… i
m-1

ai
1

i
2

… im

bi1 i2 … im

by removing all elements from X with indices greater than or equal to m + 1 for 

m � 1, 2, … . If the limit of Xm exists as m ® ¥ and if Α � limm®¥ Xm, then it is 

said that X converges and represents Α.

BranchedContinuedFraction:PeriodicBranchedFraction

Two branching fractions are said to be graphically equal if their branching 

numbers are the same and if the elements with equal indices coincide; branch�

ing fractions which are not graphically equal are said to be graphically differ�

ent. A branching continued fraction X of the form

X � b + â
i1�1

N ai1

bi1
+ Ú

i2�1

Ni1 ai1 i2

bi1 i2 i3
+ Ú

i3�1

Ni
1

i
2 ai

1
i
2

i
3

º

is said to be periodic if it contains a finite number of pairwise graphically 

different subfractions.

BrodenBorelLevyTheorem
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Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

and let 0 < Ξ < 1 have the regular continued fraction expansion

Ξ � 0 + K
k=1

¥ 1

bk

.

The Lebesgue measure Λ of all Ξ in @0, 1D that have the initial partial denomina�

tors b1, b2, … , bn and property that ΤnHΞL < Ξ is

Λ �
Hsn + 1L Ξ

sn Ξ + 1
,

where

sn � K
k=1

n 1

bn-k+1

.

BundschuhSumExpansion

Let

ΑgH ΒL � â
k=1

¥ g - 1

g
dk Βt

where g Î Z and g > 1 and Β is an irrational number.  Further, let

1

Β
� b0 + K

n=1

¥ 1

bn

and An � Bn be its convergents. After defining a sequence Ck through

C0 � b0

Cn � g
qHn-2L â

j=0

bn-1

g
j qHn-1L

where n ³ 1

the following identity holds:

ΑgH ΒL � C0 + K
n=1

¥ 1

Cn

.

BuslaevCounterexampleToHolomorphicPadeConjecture
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Let

Ζ �
1

2
I-1 - ä 3 M

and

f HzL �
3 HΖ + 9L z

3 + 6 z
2 + 4 z

6 + 81 I3 - HΖ + 3L z
3M2

- 27

2 z IHΖ + 9L z
2 + 9 z + 9M

be a hyperelliptic function set, and f1HzL be the holomorphic function thats is 

the branch with f1H0L � 0.  Then it is not the case that f1HzL satisfies the Padé  

conjecture.

BuslaevCriteriaForContinuedFractionConvergence

Let

Ξ � K
n=1

¥ an

bn

be a generalized continued fraction. Then given 

lim sup
n®¥

 -1 + bn¤ + 2 lim sup
n®¥

 -1 + an + bn¤ < 1, the continued fraction 

converges.

CantorSetEqualitiesForRealNumbersWhoseContinuedFracti

onsHavePartialQuotientsLessThanOrEqualTo2Or3

Let Fk be the real numbers whose regular continued fractions have partial 

quotients less than or equal to k and Gk be the interval containing it.

Gk � @minHFkL, maxHFkLD

Then

3 F3 � 3 G3 �
1

2
I 21 - 3M,

3

2
I 21 - 3M

and

4 F2 � 4 G2 � A2 I 3 - 1M, 4 I 3 - 1ME.

CDuallyReducedIrrationalNumber
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In irrational number Α Î R �Q with conjugate Α¢ is C-dually reduced if Α > 1 and 

Α¢ < 0.

CDuallyRegularFractionsConvergeToIrrationals

Any C-dually regular continued fraction Ξ converges to some Α Î R �Q.

CentralLimitTheoremForContinuedFractionConvergenceOf

DecimalApproximations

Let x be an irrational number where 0 < x < 1 and

dnHxL � 10
-n d10

n
xt

enHxL � 10
-n Hd10

n
xt + 1L

be decimal approximations of x.  Let

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of x,

dnHxL � K
n=1

¥ 1

b
n

HdL

be the regular continued fraction of dnHxL,

enHxL � K
n=1

¥ 1

b
n

HeL

be the regular continued fraction of enHxL, and

knHxL � sup
i

:i : " i £ n í bi

HdL � bi

HeL>.

Let S be irrational numbers x with HknHxL - a nL � I n ΣM £ z, where

a �
6 lnH2L lnH10L

Π2

and Σ is a positive constant. Then

" i < knHxL, bi � bi

HdL � bi

HeL

and

lim
n®¥

HmHSLL �
1

2 Π
à

-¥

z

ã
-t

2�2
â t,

where m is the Lebesgue measure.

CFractionForCertainPowerSeries1
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CFractionForCertainPowerSeries1

The power series P HxL � c0 + Úi�1
¥

ci x
Λi 2i-1

, ci ¹ 0, i � 0, 1, 2, … , Λ1 ³ 1, has the 

corresponding continued fraction

Ξ � c0 +
b1 x

Λ1

1 +
b2 x

Λ1

1+
b3 x

Λ
1

1+º

where b1, b2, …  are given in terms of c1, c2, …  by the formulas: b1 � c1, 

b2 n � -a2 n+1, b2i+1 � -c1 ci+1 �c
i

2, and b
n 2i+1+2i+1 � H-1Ln

b2i+1 for 

i, n � 1, 2, 3, … .

CFractionForCertainPowerSeries2

Under the hypothesis Λi+1 ³ 2 Λi for i � 1, 2, 3, … , the power series 

P HxL � c0 + Úi�1
¥

ci x
Λi 2i-1

, ci ¹ 0, i � 0, 1, 2, … , Λ1 ³ 1, has the corresponding 

continued fraction

Ξ � c0 +
b1 x

Α1

1 +
b2 x

Α2

1+
b3 x

Α
3

1+º

where the bi are independent of the Λi and are given in terms of c1, c2, …  by the 

formulas a1 � c1, a2 n � -a2 n+1, a2i+1 � -c1 ci+1 �c
i

2, and a
n 2i+1+2i+1 � H-1Ln

a2i+1 

for i, n � 1, 2, 3, … , and where the Αi are independent of the ci and are given 

by the formulas: Α1 � Λ1, Α2 n � Α2 n+1, Α2i+1 � Λ1 + Λi+1 - 2 Λi, and 

Α
n 2i+1+2i+1 � H-1Ln Α2i+1 for i, n � 1, 2, 3, … .

CFractionForCertainPowerSeries3
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Given a formal power series f0 HzL � Ún�0
¥

cn z
-n-1, there is an associated contin�

ued fraction Ξ0 of the form

Ξ0 �
c0

z - Α0 -
Β0

z-Α1-
Β1

z-Α2-º-
Β
r-2

z-Α
r-1

-º

where the partial numerators AkHzL and denominators BkHzL of Ξ0 are polynomi�

als of the form

Ak HzL � â
n�0

k-1

Ζk,n z
n

and

BkHzL � â
n�0

k

Ζ
k,n
¢

z
n
,

respectively, for some complex constants Ζk,n, Ζ
k,n
¢ .

CFractionsInOneToOneCorrespondenceWithNonRationalP

owerSeries

There is a one-to-one correspondence between corresponding type continued 

fractions

Ξ � 1 +
b1 x

Α1

1 +
b2 x

Α2

1+
b3 x

Α
3

1+º

and power series of the form

P HxL � 1 + â
k�1

¥

ck x
k

which do not represent rational functions of x. Moreover, if the nth convergent 

of Ξ is denoted An HxL � Bn HxL, this correspondence is completely determined by 

the recursion

Bn HxL P HxL - An HxL � HxΑ1+Α2+º+Αn+1L

where HxsL denotes a formal power series in which the sth power is the smallest 

power of x which appears.

CharacterizationOfBestLeftRightFit
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For any irrational number Α in H0, 1L, the Farey process zeroed in on Α gives a 

sequence of best left and right approximations to Α. Moreover, every best left 

and right approximation arises in this way.

CharacterizationOfContinuedFractionApproximants

For any real number x, let Ξ be the continued fraction representation of x and 

let ar be the Hr + 1Lth partial quotient in Ξ, i.e., Ar � Br � @b0; b1, b2, … , brD where 

Ar � Br denotes the Hr + 1Lth convergent of Ξ. Then either (i) there are an infinite 

number of rational approximations p �q to x for which q  q x - p¤ <
1

r
2+4

 or (ii) 

there exists an integer n0 for which an < r - 1 for all n ³ n0.

CharacterizationOfFareyIntervalsAndMediants

Let @a �b, c �dD be a Farey interval. The two subintervals @a �b, MD and @M, c �dD 
formed by inserting the mediant M � Ha + cL � Hb + dL are also Farey intervals and, 

among all rational numbers x � y such that a �b < x � y < c �d, M is the unique 

rational number with the smallest denominator (when reduced).

ChordalMetricOnRiemannSphere

Let w1 and w2 be two points in C
`

, then the Euclidean length of the chord 

connecting the two points, known as the chordal distance or chrodal metric, is 

given by

SHw1, w2L �

2  w1-w2¤

1+ w1¤2 1+ w2¤2
for Hw1, w2L Î C

2

2

1+ w1¤2
w1 Î C ì w2 � ¥

�

0 w1 � w2 � ¥
�

.

CircularConvergenceTheorem
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Let Vn be a region in the complex plane characterized by the fact that vn Î Vn if 

and only if ReIvn ã-ä ΑM ³ -gn cos Α where the gn are constants, 0 < gn < 1 for 

n � 1, 2, … , and where Α Î H-Π �2, Π �2L. Let Ξ be a continued fraction of the 

form Ξ � @0; b1, b2, … D and denote by Kn the circular region Kn � Sn HVn+1L of 

radius Rn, where Sn H0L � An � Bn is the nth approximant of Ξ and where 

Sn HwL � An+An-1 w

Bn+Bn-1 w
 is the approximant function for all complex w. If dn denotes 

the quotient

dn �
Û

Ν�1

n

J 1

gΝ+1

N

Ú
k�0

n-1

Û
Ν�1

k

J 1

gΝ+1

- 1N

and if the sum

â
Ν�2

¥ dΝ-1 gΝH1 - gn+1L

 bΝ¤

diverges, then Ξ converges to some complex number b.

ComparisonOfContinuedFractionPeriodsForRootDAndHalf

OfOnePlusRootD1

Let D be a square free positive integer and for the regular continued fraction for 

D , b1HnL its partial denominators, and l1HDL the period of b1HnL and for the 

regular continued fraction of I D + 1M �2, b2HnL its partial denominators and 

l2HDL the period of b2HnL.  Given $odd T and U T ^2 - D*U^2 � 4 then 

l2HDL + 4 £ l1HDL £ 5 l2HDL.

ComparisonOfContinuedFractionPeriodsForRootDAndHalf

OfOnePlusRootD2

There are infinitely many D that are square free positive integers with 

modHD, 4L � 1 and for the regular continued fraction for D , b1HnL its partial 

denominators, and l1HDL the period of b1HnL and for the regular continued 

fraction of 
1

2
I D + 1M, b2HnL its partial denominators and l2HDL the period of 

b2HnL, it is the case that l1HDL � 3 l2HDL - 8 and it is not true that 

$odd T and U T
2 - DU2 � 4 and it is not true that $V and W V

2 - D W
2 � -1 and l1HDL 

is unbounded.

ComplexRegularSymmetricPeriodicContinuedFractionsForI

maginaryQuadraticIrrationals
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ComplexRegularSymmetricPeriodicContinuedFractionsForI

maginaryQuadraticIrrationals

Let D be a natural number, Q0 be a positive integer,

x �
D

Q0

be an irrational number, bn be a natural number,

Ξ � K
n=1

¥ 1

an

be the regular continued fraction of x, lHdL be the regular continued fraction 

period of Ξ, and

an �
ä b0 for n � 0

-ä bn mod p for n mod p ¹ 0

-2 ä b0 for n mod p � 0

be the partial denominator of Ξ.  Then bn can be determined by also determin�

ing the sequences Pn and Qn:

P0 � 0

Q-1 �
D - P0

2

Q0

bn �
D

Qn

+ Pn

Pn+1 � bn Qn - Pn

Qn+1 � bn HPn+1 - PnL + Qn-1.

ConditionalProbabilityTheoremForContinuedFractionCoeffi

cients

Let Ξ � @0; b1, b2, … D be an arbitrary continued fraction and suppose that k > { 
are two positive integers. The conditional probability Pr 8bk � p b{ � q< differs 

little from the unconditional probability Pr 8bk � p< which is asymptotic to fp 

where fp � limK®¥ Np HKL � K for NpHKL the number of times the digit p occurs in 

the first K quotients of Ξ. More precisely, given an arbitrary constant Β,

Pr 8bk � p b{ � q< - fp � O ã
- Β k-{

as the difference k - { tends to infinity.

ContinuedFraction
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ContinuedFraction

The term “continued fraction” can be applied in several different contexts. In 

general, any expression Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

with terms a j, bk, j � 1, 2, 3, … , k � 0, 1, 2, … , consisting of arbitrary mathe�

matical objects such as vectors in Cn, C-valued square matrices, Hilbert space 

operators, multivariate expressions, other such fractions, etc., is a continued 

fraction. Such expressions can terminate after finitely many terms or can 

continued infinitely. The terms ak, respectively bk, are called the partial numera�

tors, respectively partial denominators, of Ξ, and together, objects of the collec�

tion 8ak, bk< are called the elements of Ξ.

Most typically, the term “continued fraction” is used to describe the scenario 

where a j and bk, j � 1, 2, 3 … , k � 0, 1, 2, … , are integers. In this case, any 

continued fraction which terminates after a finite number of terms defines a 

rational number q Î Q. Otherwise, there are two distinct possibilities for the 

expression Ξ which are characterized by the behavior of the rational numbers qn 

defined by the finite expressions Ξn of the form

Ξn � b0 +
a1

b1 +
a2

¸+
an

bn

,

called the nth convergent of Ξ. In particular, it may be the case that for some 

real number Α Î R, Ξn ® Α as n ® ¥ whereby it is said that Ξ is the continued 

fraction associated to Α and that Ξn converges to Α; it is also possible, however, 

that Ξn diverges as a sequence of rational numbers.

The above definition can be made both more general and more mathematically 

rigorous by way of the following function-theoretic construction. Given an 

ordered pair of sequences H8am<, 8bm<L, am, bm Î C, m Î Z
+, am ¹ 0 for m ³ 1, one 

may consider the associated sequences 8snHwL<, 8SnHwL<, n � 0, 1, 2, … , of linear 

fractional transformations defined recursively by s0 HwL � b0 + w,

snHwL �
an

bn + w

,

S0 HwL � s0 HwL, Sn HwL � Sn-1 HsnHwLL for n � 1, 2, 3, … . By then defining the 

sequence 8 fn< so that, for each n � 0, 1, 2, … , fn � Sn H0L Î C Ü 8¥<, one can 

define a continued fraction (with complex elements) to be the ordered pair 

HH8am<, 8bm<L, 8 fn<L.

ContinuedFraction:AlphaFraction
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ContinuedFraction:AlphaFraction

Let Ξ be a real number. Then the Α-continued fraction expansion for 1 �2 £ Α £ 1

Ξ � ¶0 b0 + K
j=1

N ¶ j

b j

(where N is possibly infinity), ¶ j Î 8-1, 1<, and b j Î Z
+ can be calculated 

through the repeated application of the map ΤΑ: @Α - 1, 1D ® @Α - 1, 1D

ΤΑHxL �
sgnHxL

x
- f

sgnHxL

x
+ 1 - Αv for x ¹ 0

0 for x � 0.

ContinuedFraction:AlphaRosenFraction

Let Ξ be a real number. Then the Α-Rosen continued fraction expansion for 

q Î Z
+, q ³ 3 and Λq � 2 cosHΠ �qL 0 £ Α £ 1 � Λ

Ξ � ¶0 b0 + K
j=1

N ¶ j

b j

(where N is possibly infinity), ¶ j Î 8-1, 1<, and b j Î Z
+ can be calculated 

through the repeated application of the map ΤΑ: @HΑ - 1L Λ, Α ΛD ® @HΑ - 1L Λ, Α ΛD

ΤΑHxL �
sgnHxL

x
- Λ f

sgnHxL

Λ x
+ 1 - Αv for x ¹ 0

0 for x � 0.

ContinuedFraction:AlternatingPositiveTermFraction

A Thron fraction Ξ of the form

Ξ �
F1 z

1 + G1 z +
z F2

1+G2 z+
z F3

1+G3 z+º

is said to be an alternating positive term fraction or APT-fraction if 

Fm, Gm Î R � 80< satisfy the conditions F2 m-1 F2 m > 0, F2 m-1 �G2 m-1 > 0 for 

m � 1, 2, 3, … .

ContinuedFraction:ApproximantFunction
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Given an ordered pair H8am<mÎZ
+, 8bm<mÎZ

*L of complex sequences with am ¹ 0 

for m ³ 1, the so-called nth continued fraction approximant function Sn is the 

function defined recursively for complex numbers w Î C by S0 HwL � s0 HwL and

Sn HwL � Sn-1 HsnHwLL,

where s0 HwL � b0 + w and sn HwL � an Hbn + wL-1 for n � 1, 2, 3, … . By way of a 

simple substitution for n ³ 1, it follows that Sn has the form

Sn HwL � b0 +
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

Despite nomenclature which has yet to be standardized, Sn is called the nth 

approximant function by authors as a way of acknowledging that SnH0L is the 

finite generalized continued fraction Ξn of the form

Sn H0L � Ξn � b0 + K
m=1

n am

bm

,

also known as the nth approximant (or nth convergent) of the related infinite 

generalized continued fraction

Ξ � b0 + K
m=1

¥ am

bm

.

Though often unnamed, at least one other name related to Sn can be found in 

the literature. Cuyt et al. refer to Sn HwnL Î C
`
 as the nth modified approximant 

related to a sequence w0, w1, w2, …  of complex numbers. This term appears to 

be an acknowledgment of work done by Thron on the results of “modifying" the 

sequence 8SnH0L< of continued fraction approximants to a sequence 8SnHwnL< for 

some prescribed complex 8wn<. Similar references and conventions can be found 

in the works by Lorentzen & Waadeland.

ContinuedFraction:ApproximationProperty

A number field F is said to have the approximation property if for every 

“irrational” Α (i.e., Α Ï F),

Α -
P

Q

<
1

k Q
2

for infinitely many rational elements P �Q Î F and for k a positive constant.

ContinuedFraction:ApproximationsInDefect
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Let Ξ � @0; b1, b2, … D be a continued fraction (either finite or infinte) which 

converges towards a number Α and let An � Bn denote the nth convergent of Ξ, 

n � 1, 2, … . Then the odd convergents A2 n-1 � B2 n-1, n � 1, 2, … , which 

increase towards Α are called approximations in defect.

ContinuedFraction:ApproximationsInExcess

Let Ξ � @0; b1, b2, … D be a continued fraction (either finite or infinte) which 

converges towards a number Α and let An � Bn denote the nth convergent of Ξ, 

n � 1, 2, … . Then the even convergents A2 n � B2 n, n � 1, 2, … , which decrease 

towards Α are called approximations in excess.

ContinuedFraction:AssociatedContinuedFraction

Given sequences of complex numbers Αn and Βn with Αn ¹ 0 the associated 

continued fraction is the generalized continued fraction

K
n=1

¥

Αn for n � 1

-z
2 Αn otherwise

1 + Βn z

.

ContinuedFraction:BaumSweetContinuedFraction

Let s � 8sn<
n�1
¥  be a binary sequence whose nth term sn is defined to be 0 if the 

binary expansion n contains (at least) one string of zeros having odd length 

and is defined to equal 1 otherwise. The sequence s is called the Baum-Sweet 

sequence and the regular continued fraction Ξ � @0; s0, s1, s2, … D is called the 

Baum-Sweet fraction associated to s. This construction can be also generalized 

by way of the transformation 0 # a, 1 # b for distinct positive integers 

a, b Î Z
+, whereby sk Î 8a, b< for all k � 0, 1, 2, … .

Though this fraction seems to be the focus of relatively little literature, it was 

defined by Baum and Sweet as part of their work on algebraic power series and 

has been linked to areas such as diophantine approximation theory. Moreover, 

one of the more well-known properties of the Baum-Sweet fraction Ξ is that it is 

transcendental, a result which can be proved by advanced numerical methods 

found, e.g., in the work of Adamczewski.

ContinuedFraction:ByExcessContinuedFraction
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A continued fraction is called a by-excess continued fraction if it has the form

Ξ � b0 + K
k=1

N -1

bk

,

where bk Î Z
+ and N is possibly ¥.

For example,

1531

1101
� 2 -

1

2 -
1

3-
1

5-
1

3-

1

4-

1

5

.

is a by-excess continued fraction.

ContinuedFraction:CConvergent

For any irrational Α Î R �Q with associated C-regular continued fraction Ξ of the 

form

Ξ � 2 a0 - 1 +
Ε1

a1 +
1

a2+
Ε3

a3+
1

a
4

+º

,

the ratios An � Bn for all natural numbers n Î Z
+ are called the C-convergents of 

Ξ.

ContinuedFraction:CDualConvergent

For any irrational Α Î R �Q with associated C-dually regular continued fraction 

Ξ of the form

Ξ � 2 b0 - 1 +
1

b1 +
Ε2

b2+
1

b3+
Ε
4

b
4

+º

,

the ratios An � Bn for all natural numbers n Î Z
+ are called the C-dual conver�

gents of Ξ.

ContinuedFraction:CDuallyRegularFraction
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Let Ξ be a continued fraction of the form

Ξ � 2 b0 - 1 +
2

2 b1 +
2 Ε2

2 b2+
2

2 b3+
2 Ε

4

2 b
4

+º

where b0 Î Z, bn Î Z
+, and Ε2 n satisfies

Ε2 n �
+1 for U2 n � C

-1 for U2 n � E1

for all n Î Z
+.  Here, the elements Uä come from the dually regular chain 

representation

V1
b0-1

C V1
b1-1

U2 V1
b2-1

C V1
b3-1

U4 V1

b4-1
º

of a related complex number Ξ0
* and the matrices V1, C, and E1 are defined to be

V1 � 1 ä

0 1

C � 1 ä - 1

1 - ä ä

E1 � 1 0

1 - ä ä
.

ContinuedFraction:CDuallyRegularPurelyPeriodicFraction

A C-dually regular continued fraction Ξ of the form

Ξ � 2 b0 - 1 +
2

2 b1 +
2 Ε2

2 b2+
2

2 b3+
2 Ε

4

2 b
4

+º

is said to be purely periodic if both sequences 8b1, b3, b5, … < and 8Ε2, Ε4, Ε6, … < 

are both purely periodic.

ContinuedFraction:CFraction
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A generalized continued fraction ΞC is called a C-fraction if it has the form

ΞC � b0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

,

where b0 Î C is an arbitrary complex number and where an and Αn are 

sequences of nonzero complex numbers and of integers, respectively. This 

definition can be made more precise, however.

Let P HzL � c0 + c1 z + c2 z
2 + º, c0 ¹ 0, be a formal power series with coefficients 

ck Î C. The generalized continued fraction ΞC of the form

ΞC � c0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

is said to be the “corresponding continued fraction” to P (i.e., a C-fraction) 

provided its elements satisfy the “correspondence relations”

Hcn, cn-1, cn-2, … L

∆p,0

∆p,1

∆p,2

»

�

0 for Α0 + º + Αp < n < Α1 + º + Αp+1

H-1Lp
a1 a2 º ap+1 for n � Α1 + º + Αp+1,

where ∆ä, j denotes Kronecker’s delta.

In some ways, C-fractions appear to be the most far-reaching of the families of 

fractions generally defined, though as their definition suggests, they appear 

particularly often in literature on the theories of formal power series. They also 

appear quite frequently in the study of Padé  approximants, so much so that 

subclasses of C-fractions (regular C-fractions, for example) are often classified 

and studied based on correspondences with Padé  approximants.

ContinuedFraction:ChanExpansion

Results.nb    67



Let 0 £ Ξ < 1 be a real number. For any integer m ³ 2, Chan’s continued fraction 

expansion is defined through

Ξ � K
j=1

¥ ∆ j,1 m
-a1 + I1 - ∆ j,1M Hm - 1L m

-a j

1
.

The coefficients an can be calculated through

an � ΗmIΤ
m

n-1HΞLM

where

ΗmHxL �
e-log

m
HxLu for x ¹ 0

¥ for x � 0

and

ΤmHxL �
1

m-1
J 1

m
i
x

- 1N when $i,iÎZ
+

1

m
i+1

< x £
1

m
i

0 for x � 0.

ContinuedFraction:CommonNotations

Common notations for the generalized continued fraction

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+¸

include

Ξ � b0 +
a1

b1+

a2

b2+

a3

b3+
…

Ξ � b0 +
a1

b1

+
a2

b2

+
a3

b3

+ … HPringsheimL

Ia1, a2, a3, … ; b0, b1, b2, b3, … M  (Leighton and Wall)

and

Ξ � b0 + K
k=1

¥ ak

bk

HGaussL.

In Gauss’s notation, the uppercase K stands for “Kettenbruch,” which is German 

for “continued fraction.”

Common notations for the nth convergent of a continued fraction include pn �qn 

and An � Bn, the former being more prevalent in older papers and the latter 

being more common in the recent literature.  Here, the notation An � Bn is used.

ContinuedFraction:ComplexContinuedFraction
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A continued fraction Ξ of the form

Ξ �
a1

b1 +
a2

b2+
a3

b3+º

is said to be a complex continued fraction if for each k � 1, 2, 3, … , ak, bk Î C.

ContinuedFractionConditionForTrivialClassNumber

Let d be a squarefree integer, F be its quadratic field, and n be the class number 

set of F.  Given

d mod 4 � 2 ê d mod 4 � 3

then n � 1 if and only if d has the monadic expansion property.

ContinuedFraction:Continuant

The multivariate polynomials Kn (continuants or continuant polynomials) are 

defined through

K0HL � 1

K1Hx1L � x1

KnHx1, … , xnL � Kn-1Hx1, … , xn-1L xn + Kn-2Hx1, … , xn-2L for n ³ 2.

ContinuedFraction:Convergence

A continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

with nth convergent Ξn is said to converge to a value x if Ξn ® x as n ® ¥. In the 

case where Ξn ® ± ¥, Ξ is said to be inessentially divergent; if limn®¥ Ξn fails to 

exist, Ξ is said to be essentially divergent.

Note that Ξ ® x as n ® ¥ occurs precisely when Ξ2 n ® x and Ξ2 n-1 ® x as n ® ¥. 

Also, while notationally similar to convergence of a real sequence, say, contin�

ued fraction convergence is considerably different. Unlike with convergent 

series, for example, omission of a finite number of initial terms of a continued 

fraction can completely change convergence-related behavior.

ContinuedFraction:Convergent
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ContinuedFraction:Convergent

Given a continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

,

its nth convergent Ξn is the finite continued fraction obtained by truncating Ξ at 

the nth level, i.e.,

Ξn � b0 +
a1

b1 +
a2

b2+
a3

¸+
an

bn

.

Writing Ξn � An � Bn, it is easily verified that the partial numerators and denomi�

nators of Ξn satisfy the recurrence relations An � an An-1 + bn An-2, 

Bn � an Bn-1 + bn Bn-2 for n � 1, 2, …  provided one defines A-1 � 1, A0 � b0, 

B-1 � 0, and B0 � 1.

ContinuedFraction:ConvergentDenominator

Given a continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

,

its nth convergent denominator Bn is the expression in the denominator of the 

nth convergent Ξn � An � Bn where Ξn is the finite continued subfraction of the 

form

Ξn � b0 +
a1

b1 +
a2

b2+
a3

¸+
an

bn

.

ContinuedFraction:ConvergentNumerator

Given a continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

,

its nth convergent numerator An is the expression in the numerator of the nth 

convergent Ξn � An � Bn where Ξn is the finite continued subfraction of the form

Ξn � b0 +
a1

b1 +
a2

b2+
a3

¸+
an

bn

.

ContinuedFraction:ConvergentRecurrenceRelations
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ContinuedFraction:ConvergentRecurrenceRelations

The nth convergent Ξn � An � Bn of a generalized continued fraction 

Ξ � b0 + K Ham �bmL consists of elements An, Bn which satisfy the recurrence 

relations An � bn An-1 + an An-2, Bn � bn Bn-1 + an Bn-2, n � 1, 2, 3, … , subject 

to the initial conditions A-1 � B0 � 1, B-1 � 0, A0 � b0. Modulo the initial 

conditions, this recurrence relation can be written in shorthand by way of 

matrix operations, namely

An

Bn

� bn

An - 1

Bn-1

+ an

An-2

Bn-2

for n � 1, 2, 3, … .

The above-mentioned identity is a specialized case of the more general theory 

of three-term recurrence relations. Indeed, a sequence 8Xn<
n�-1
¥  of complex 

numbers is a solution of the so-called three-term recurrence relation

Xn � bn Xn-1 + an Xn-2

provided that all consecutive triples of its elements are solutions where, here, 

an, bn Î C for n � 1, 2, 3, …  and ak ¹ 0 for all k. In addition to the identity 

given above, one can easily show that the sequences 8An<, 8Bn< associated to Ξ 

actually form a basis for the solution space L of the three-term recurrence 

relation. A considerable amount of information concerning the role of contin�

ued fractions in three-term recurrence relations and minimal solutions thereto 

can be found in the works of Pincherle and Gautschi.

ContinuedFraction:CRegularFraction
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Let Ξ be a continued fraction of the form

Ξ � 2 a0 - 1 +
2 Ε1

2 a1 +
2

2 a2+
2 Ε3

2 a3+
2

2 a
4

+º

where a0 Î Z, an Î Z
+, and Ε2 n-1 satisfies

Ε2 n-1 �
+1 for U2 n-1 � C

-1 for U2 n-1 � E1

for all n Î Z
+.  Here, the elements Uä come from the regular chain representation

V1
a0-1

U1 V1
a1-1

C V1
a2-1

U3 V1
a3-1

C V1

a4-1
º

of a related complex number Ξ0 and the matrices V1, C, and E1 are defined to be

V1 � 1 ä

0 1

C � 1 ä - 1

1 - ä ä

E1 � 1 0

1 - ä ä
.

ContinuedFraction:CRegularPurelyPeriodicFraction

A C-regular continued fraction Ξ of the form

Ξ � 2 a0 - 1 +
2 Ε1

2 a1 +
2

2 a2+
2 Ε3

2 a3+
2

2 a
4

+º

is said to be purely periodic if both sequences 8a0, a1, a2, … < and 8Ε1, Ε3, Ε5, … < 
are both purely periodic.

ContinuedFraction:Divergence
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Divergence of a continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

with nth convergent Ξn occurs when Ξn fails to converge to a finite expression as 

n ® ¥.

Two distinct types of divergence are defined: In the case where Ξn ® ± ¥, Ξ is 

said to be inessentially divergent while Ξ is said to diverge essentially provided 

that limn®¥ Ξn fails to exist. Essential divergence can be examined by consider�

ing the even and odd convergents Ξ2 n and Ξ2 n-1 of Ξ, respectively, and in 

particular, Ξ will essentially divergent provided that either of limn®¥ Ξ2 n, 

limn®¥ Ξ2 n-1 fails to exist or in the case that both limits exist but are unequal.

ContinuedFraction:EllipticContinuedFraction

A p-periodic continued fraction Ξ � KHan �bnL is said to be elliptic if Sp is elliptic, 

i.e., if  R¤ �  RHΞL¤ � 1, R ¹ 1. Here, Sn is the Möbius transformation defined for 

all w Î C by the approximant function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

and R is the ratio

R �
1-u

1+u
for c ¹ 0, a + d ¹ 0

-1 for c ¹ 0, a + d � 0

associated to Sn � Ha w + bL � Hc w + dL where u � 1 - 4 D � Ha + dL2 , 

D � a d - b c ¹ 0.

ContinuedFraction:EulerFraction

Given a sequence of complex numbers Αn with Αn ¹ 0, the Euler fraction is the 

generalized continued fraction

K
n=1

¥ -Αn z

1 +
0 for n � 1

z Αn otherwise

.

ContinuedFraction:EvenPart
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Let x � @b0; b1, b2, … D be an arbitrary regular continued fraction whose kth 

approximant is denoted xk � Ak HxL � Bk HxL.  Then the even part of x is the 

sequence 8x2, x4, … < of the even approximants of x.

ContinuedFraction:Expansion

Given a constant c, a regular continued fraction expansion is an expression of 

the form

Ξ � b0 + K
k=1

¥ ak

bk

with partial numerators ak and partial denominators bk taken from some 

domain, usually positive integers, such that Ξ � c.

ContinuedFractionExpansionHurwitzApproximationQuality

Let z be a complex number with -1 �2 < ReHzL < 1 �2 and -1 �2 < ImHzL < 1 �2 

with Hurwitz continued fraction expansion

z � K
k=1

N 1

bk

with N possibly infinite and An � Bn the sequence of convergents.  Suppose B is a 

Gaussian integer with  Bn-1¤ < B <  Bn+1¤ and A is a Gaussian integer with 

A � B ¹ An � Bn.  Then

z -
A

B

³
1

5
z -

An

Bn

Bn

B

for all n.

ContinuedFractionExpansionHurwitzBoundedPartialDenomi

nators

Let z be a complex number with Hurwitz continued fraction expansion

z � b0 + K
k=1

¥ 1

bk

.

Then for every even integer d there exist nonreal algebraic numbers of degree d 

over Q such that the Hurwitz expansion has bounded partial denominators bk.

ContinuedFractionExpansionHurwitzConvergentDenominat

orGrowth
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ContinuedFractionExpansionHurwitzConvergentDenominat

orGrowth

Let z be a complex number with -1 �2 < ReHzL < 1 �2 and -1 �2 < ImHzL < 1 �2 

with Hurwitz continued fraction expansion

z � K
k=1

N 1

bk

with N possibly infinite.  Then the denominators of the convergents An � Bn 

satisfy

 Bn+2¤

 Bn¤
³

3

2

for all positive integer n £ N.

ContinuedFractionExpansionHurwitzQuadratic

Let z be a complex number that is the root of a quadratic equation with Gaus�

sian integer coefficients with Hurwitz continued fraction expansion

z � b0 + K
k=1

¥ 1

bk

.

The b j are defined through

ΤHxL �
1

x

-
1

x

b0 � dx

b j �
1

Τ jHxL
.

Then only finitely many different Τ jHxL exist for x � z.

ContinuedFractionExpansionsOfRational
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Let Α be a rational number where 0 < Α < 1; then it has exactly two regular 

continued fractions that are finite:

Ξ1 � K
n=1

N 1

b1,n

and

Ξ2 � K
n=1

N+1 1

b2,n

where

Ib1,N > 0 ì "n>N b1,n � 0 ì "n>1+N b2,n � 0 ì

"n<N b1,n � b2,n ì -1 + b1,n � b2,n ì b2,N+1 � 1M.

ContinuedFraction:FamilyTypes

A continued fraction ΞC is called a C-fraction if it has the form

ΞC � b0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

,

where b0 Î C is an arbitrary complex number and where an and Αn are 

sequences of nonzero complex numbers and of integers, respectively. The “C” 

stands for “corresponding type,” as fractions of this form correspond to formal 

power series P HzL � c0 + c1 z + c2 z
2 + º, c0 ¹ 0, ck Î C.

Given complex sequences a1, a2, … ¹ 0 and b1, b2, … , the continued fraction ΞJ 

is said to be a J-fraction or Jacobi-fraction provided it has the form

ΞJ �
a1

z + b1 -
a2

z+b2-
a3

z+b3-º

.

The continued fraction ΞM is said to be an M-fraction provided that, for 

sequences of complex numbers Fn, Gn Î C,

ΞM �
F1

1 + G1 z +
z F2

1+G2 z+
z F3

1+G3 z+º

.

Fractions ΞT h of the form

ΞTh �
c1 z

e1 + d1 z +
c2 z

e2+d2 z+
c3 z

e3+d3 z+º

are said to be a generalized Thron fractions when dn Î C, cn, en Î C � 80< for 

n � 1, 2, 3, … . They can be further classified by examining cn, dn, en:

• Fractions with en � 1, cn � Fn, and dn � Gn are called Thron fractions or 

generalized T-fractions.

• Thron fractions with Fn � 1 for all n are called T-fractions.

• Thron fractions for which Fm, Gm > 0 for all m are positive T-fractions.

• Thron fractions for which Fm, Gm Î R � 80< satisfy the conditions F2 m-1 F2 m > 0, 

F2 m-1 �G2 m-1 > 0 are called alternating positive term fractions (APT) fractions.

The continued fractions ΞS of the form

ΞS �
a1 z

1 +
a2 z

1+
a3 z

1+º

are called Stieltjes-fractions or S-fractions provided an Î R
+. Any continued 

fraction f  which satisfies B H f HaHzLLL � g HzL is called a modified S-fraction for g 

an S-fraction, a, B : W Ì C ® C meromorphic functions.

A continued fraction ΞP is said to be a P-fraction if

ΞP � b0

1

b1 +
1

b2+
1

b3+º

where for each n � 0, 1, 2, … , bn � bn H1 �zL is a polynomial in 1 �z.

Given a function f , the Thiele-fraction is an interpolating fraction Ξappr of the 

form

Ξappr � b0 +
z - z0

b1 +
z-z1

b2+
z-z2

b3+º

where here, the elements zn are distinct points at which values of f  are known 

and the elements bn are formed from the inverse differences of f : b0 � j0 @z0D 

and bk � jk @z0, … , zkD for k � 1, 2, … .

A fraction of the form

ΞΛq
� b0 Λq +

Ε1

Λq b1 +
Ε2

Λq b2+
Ε3

Λq b3+º

is said to be a Λq-fraction provided that for q ³ 3 odd, Λq � 2 cos HΠ �qL, b0 Î Z, 

bn Î Z
+ for n � 1, 2, … , and Εn Î 8±1< for n ³ 0. When q � 5, Λq � Φ, and the 

resulting fraction ΞΛ5
� ΞΤ is said to be a Τ-fraction.
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A continued fraction ΞC is called a C-fraction if it has the form

ΞC � b0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

,

where b0 Î C is an arbitrary complex number and where an and Αn are 

sequences of nonzero complex numbers and of integers, respectively. The “C” 

stands for “corresponding type,” as fractions of this form correspond to formal 

power series P HzL � c0 + c1 z + c2 z
2 + º, c0 ¹ 0, ck Î C.

Given complex sequences a1, a2, … ¹ 0 and b1, b2, … , the continued fraction ΞJ 

is said to be a J-fraction or Jacobi-fraction provided it has the form

ΞJ �
a1

z + b1 -
a2

z+b2-
a3

z+b3-º

.

The continued fraction ΞM is said to be an M-fraction provided that, for 

sequences of complex numbers Fn, Gn Î C,

ΞM �
F1

1 + G1 z +
z F2

1+G2 z+
z F3

1+G3 z+º

.

Fractions ΞT h of the form

ΞTh �
c1 z

e1 + d1 z +
c2 z

e2+d2 z+
c3 z

e3+d3 z+º

are said to be a generalized Thron fractions when dn Î C, cn, en Î C � 80< for 

n � 1, 2, 3, … . They can be further classified by examining cn, dn, en:

• Fractions with en � 1, cn � Fn, and dn � Gn are called Thron fractions or 

generalized T-fractions.

• Thron fractions with Fn � 1 for all n are called T-fractions.

• Thron fractions for which Fm, Gm > 0 for all m are positive T-fractions.

• Thron fractions for which Fm, Gm Î R � 80< satisfy the conditions F2 m-1 F2 m > 0, 

F2 m-1 �G2 m-1 > 0 are called alternating positive term fractions (APT) fractions.

The continued fractions ΞS of the form

ΞS �
a1 z

1 +
a2 z

1+
a3 z

1+º

are called Stieltjes-fractions or S-fractions provided an Î R
+. Any continued 

fraction f  which satisfies B H f HaHzLLL � g HzL is called a modified S-fraction for g 

an S-fraction, a, B : W Ì C ® C meromorphic functions.

A continued fraction ΞP is said to be a P-fraction if

ΞP � b0

1

b1 +
1

b2+
1

b3+º

where for each n � 0, 1, 2, … , bn � bn H1 �zL is a polynomial in 1 �z.

Given a function f , the Thiele-fraction is an interpolating fraction Ξappr of the 

form

Ξappr � b0 +
z - z0

b1 +
z-z1

b2+
z-z2

b3+º

where here, the elements zn are distinct points at which values of f  are known 

and the elements bn are formed from the inverse differences of f : b0 � j0 @z0D 

and bk � jk @z0, … , zkD for k � 1, 2, … .

A fraction of the form

ΞΛq
� b0 Λq +

Ε1

Λq b1 +
Ε2

Λq b2+
Ε3

Λq b3+º

is said to be a Λq-fraction provided that for q ³ 3 odd, Λq � 2 cos HΠ �qL, b0 Î Z, 

bn Î Z
+ for n � 1, 2, … , and Εn Î 8±1< for n ³ 0. When q � 5, Λq � Φ, and the 

resulting fraction ΞΛ5
� ΞΤ is said to be a Τ-fraction.

ContinuedFraction:FiniteDerivative

Results.nb    77



Given a finite generalized continued fraction Ξn,N � Ξn,N HzL of the form

Ξn,N �
an

bn +
an+1

bn+1+
an+2

¸+
a

N

b
N

,

where ak � ak HzL and bk � bk HzL are complex-valued analytic functions for all 

k � n, n + 1, n + 2, … , N, the derivative of Ξn,N with respect to z is given by

â

â z

K
k=n

N ak

bk

� â
j�n

N

H-1L j-n+1 ä
k�n

j
1

ak

K
{�k

N a{

b{

2

K
{� j

N a{

b{

-1 â a j

â z

-
â b j

â z

.

Moreover, â Ξn,N � â z is an analytic function for all z for which Hz, 0L Î G, where

G Ì Y Ý W � B H0, RGL Ì HC Ü 8¥<L2

is the domain of analyticity of the sequence 8gkHz, ΖL< defined by

gk Hz, ΖL � Igk,1 HzL, gk,2 Hz, ΖLM � z,
akHzL

bk HzL + Ζ
,

where Y, respectively W, is the domain of analyticity for the sequence 8akHzL<, 
respectively 8bkHzL<, and where RG < ¥ is some positive radius.

ContinuedFraction:FinitePartialDerivative
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Given sequences 8ak<
k�1
¥ � 8akHzL<

k�1
¥  and 8bk<

k�1
¥ � 8bkHzL<

k�1
¥  of complex-valued 

functions analytic on domains Y and W, respectively, for which ak ¹ 0 for k < N 

for some N and in which all ak and bk ¹{ are constant, applying 

â z � H¶b{ � ¶zL-1 â b{ to the derivative formula

â

â z

K
k=n

¥ ak

bk

� â
j�n

N

H-1L j-n+1 ä
k�n

j
1

ak

K
{�k

N a{

b{

2

K
{� j

N a{

b{

-1 â a j

â z

-
â b j

â z

yields

¶

¶b{
K
k=1

N ak

bk

� H-1L{ ä
k�1

{ 1

ak

K
j=k

N a j

b j

2

in the event that neither b{ nor â b{ � â z vanishes. The so-called determinant 

formula along with the three-term recurrence relation

Bm � bm Bm-1 + am Bm-2,

B-1 � 0, B0 � 1, satisfied by the finite convergents of K
k=1

¥

Hak �bkL allows this 

partial derivative expression to be rewritten as

¶

¶b{
K
k=1

N ak

bk

� -

K
k=1

{-1
ak

bk

- K
k=1

N

ak

bk

2

B{-1

K
k=1

{
ak

bk

- K
k=1

{-1
ak

bk

B{

.

ContinuedFraction:FormalDenominator

Let Ξ be a regular continued fraction of the form Ξ � @a1, a2, … , anD whose 

successive quotients ak are taken from either R or C for k � 1, 2, … . The nth 

formal denominator of Ξ is then the element Bn in the identity

a1 1

1 0

a2 1

1 0
º

an 1

1 0

1

0
� An

Bn

.

ContinuedFraction:FormalNumerator

Let Ξ be a regular continued fraction of the form Ξ � @a1, a2, … , anD whose 

successive quotients ak are taken from either R or C for k � 1, 2, … . The nth 

formal numerator of Ξ is then the element An in the identity

a1 1

1 0

a2 1

1 0
º

an 1

1 0

1

0
� An

Bn

.

ContinuedFraction:GeneralConvergence
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ContinuedFraction:GeneralConvergence

A generalized continued fraction K
k=1

¥

ak �bk converges generally to a value f Î C
`
 

if there exist two sequences 8vn<
n=1
¥  and 8w<

n=1
¥  of extended complex numbers 

such that

lim
n®¥

SnHvnL � lim
n®¥

SnHwnL � f

and

lim inf
n®¥

SHwm, vnL > 0,

where SmHwL is the nth approximant and SHwm, vnL denotes the chordal metric 

on the extended complex plane C
`
.

ContinuedFraction:GeneralThronFraction

A generalized continued fraction Ξ of the form

Ξ �
c1 z

e1 + d1 z +
c2 z

e2+d2 z+
c3 z

e3+d3 z+º

is said to be a generalized Thron fraction provided that dn Î C and cn, en Î C � 80< 
for n � 1, 2, 3, … . Note that the “standard” Thron fraction is a specific case 

where en � 1, cn � Fn, and dn � Gn for all n; similarly, the T-fraction results from 

further assuming that cn � Fn � 1 for all n, and it follows that other subclasses 

of “standard” Thron fractions result from specifying certain restrictions to the 

elements of general Thron fractions Ξ.

ContinuedFraction:GrommerFraction

A continued fraction Ξ of the form

Ξ �
c0

z - Α0 -
Β0

z-Α1-
Β1

z-Α2-º-
Β
r-2

z-Α
r-1

-º

is called a Grommer fraction if Βk > 0 for k � 0, 1, 2, … .

ContinuedFraction:HalfRegularContinuedFraction
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Given sequences of integers an, bn with for n > 0, bn ³ 2,  an¤ � 1 and 

bn + an+1 ³ 2, the half-regular fraction is the generalized continued fraction

b0 + K
n=1

¥ an

bn

.

ContinuedFraction:HurwitzExpansion

The Hurwitz expansion of a complex number z � a + b ä Î C is the complex 

continued fraction Ξ of the form

Ξ � b0 + K
m=1

N 1

bm

,

bk Î C for all k, 1 £ N £ ¥, whose successive elements bn are computed by way 

of the Hurwitz fraction algorithm. Explicitly, the Hurtwitz expansion Ξ associ�

ated to z is computed recursively in terms of its nth partial denominators bn by 

way of the recursion b0 � dz and

bn �
1

ΤnHzL
,

n � 1, 2, 3, … , where dz denotes the nearest Gaussian integer to z, ΤHzL is the 

transformation Τ HzL � 1 �z - d1 �z, and where ΤnHzL denotes the n-fold composi�

tion of Τ with itself. The Hurwitz expansion is a popular alternative to the oft-

studied Schmidt complex fraction expansion and tends to be preferred for its 

intuitiveness its computational simplicity.

ContinuedFraction:IdentityTypeContinuedFraction

A p-periodic continued fraction Ξ � KHan �bnL is said to be of identity type if Sp is 

the identity transformation, i.e., if SpHwL � IdHwL � w for all w Î C. Here, Sn is 

the Möbius transformation defined for all w Î C by the approximant function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

ContinuedFraction:InfiniteDerivative
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Given sequences 8ak<
k�1
¥ � 8akHzL<

k�1
¥  and 8bk<

k�1
¥ � 8bkHzL<

k�1
¥  of complex-valued 

functions analytic on domains Y and W, respectively, for which ak ¹ 0 for k < N 

for some N and which are constants except for subsequences 8a{HzL<{ÎI, 8b{HzL<{ÎJ, 

I, J Î 81, 2, … , N<, the N + 1 tail K
k=N+1

¥

Hak �bkL is defined and converges to a 

value Ζ, from which it follows that the infinite continued fraction Ξ given by

Ξ �
a1

b1 +
a2

b2+
a3

¸

has a derivative of the form

â

â z

K
k=1

¥ ak

bk

� â
j�1

¥

H-1L j ä
k�1

j
1

ak

K
{�k

¥ a{

b{

2

K
{� j

¥ a{

b{

-1 â a j

â z

-
â b j

â z

.

Moreover, the derivative â Ξ � â z is an analytic function for all z for which 

Hz, 0L Î G where here,

G Ì Y Ý W � B H0, RGL Ì HC Ü 8¥<L2

is the domain of analyticity of the sequence 8gkHz, ΖL< defined by

gk Hz, ΖL � Igk,1 HzL, gk,2 Hz, ΖLM � z,
akHzL

bk HzL + Ζ
,

where Y, respectively W, is the domain of analyticity for the sequence 8akHzL<, 
respectively 8bkHzL<, and where RG < ¥ is some positive radius.

ContinuedFraction:InfiniteFraction

An infinite continued fraction is a triple @8an<
n=1
¥ , 8bn<

n=1
¥ , 8 fn<

n=1
¥ D of sequences, 

where the ak, bk are given complex numbers with an ¹ 0 for all n, and fn is an 

element of the extended complex plane defined as follows.

Let sn be the linear fractional transformation

snHzL �
an

bn + z

for n Î Z
+, SnHzL the approximant function

S1HzL � s1HzL

SnHzL � Sn-1HsnHzLL,

and

fn � SnH0L.

ContinuedFraction:InfinitePartialDerivative
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Given sequences 8ak<
k�1
¥ � 8akHzL<

k�1
¥  and 8bk<

k�1
¥ � 8bkHzL<

k�1
¥  of complex-valued 

functions analytic on domains Y and W, respectively, for which ak ¹ 0 for k < N 

for some N and in which all bk and ak ¹{ are constant, applying 

â z � H¶a{ � ¶zL-1 â a{ to the derivative formula

â

â z

K
k=1

¥ ak

bk

� â
j�1

¥

H-1L j ä
k�1

j
1

ak

K
{�k

¥ a{

b{

2

K
{� j

¥ a{

b{

-1 â a j

â z

-
â b j

â z

yields

¶

¶a{
K
k=1

¥ ak

bk

�
1

a{
K
j=1

¥ a j

b j

ä
k�2

{ -K
j=k

¥
a j

b j

bk-1 + K
j=k

¥
a j

b j

in the event that neither a{ nor â a{ � â z vanishes.

ContinuedFraction:IntegerContinuedFraction

An integer continued fraction (or ICF) is a continued fraction Ξ of the form

Ξ �
1

b1 +
1

b2+
1

b3+º

where bk Î Z for each k � 1, 2, … .

ContinuedFraction:IntegerPart

Given a generalized continued fraction

Ξ � b0 + K
k=1

¥ ak

bk

,

b0 is known as the integer part.

ContinuedFraction:IntermediateConvergent
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Let Ξ be a regular continued fraction of the form

Ξ � b0 +
1

b1 +
1

b2+
1

b3+º

with nth convergent Ξn � An � Bn, n � 0, 1, 2, … , where A-2 � 0, A-1 � 1, 

B-2 � 1, and B-1 � 0 by definition. The intermediate convergents of Ξ are a 

collection of expressions of the form

Ξ
n

HkL �
A

n

HkL

B
n

HkL
�

An-2 + k An-1

Bn-2 + k Bn-1

,

k � 1, 2, … , bn - 1, which lie between Ξn-2 and Ξn for n � 0, 1, 2, … . One can 

easily show that the collection 9Ξ
n

HkL= is strictly increasing with respect to k.

ContinuedFraction:JFraction

Given complex sequences a1, a2, … ¹ 0 and b1, b2, … , the generalized contin�

ued fraction ΞJ is said to be a J-fraction or Jacobi-fraction provided it has the 

form

ΞJ �
a1

z + b1 -
a2

z+b2-
a3

z+b3-º

.

As it turns out, J-fractions are commonly-used tools in the theory of formal 

power series and are related to so-called C-fractions in very specific ways 

pertaining thereto. In fact, one well-known result shows that under certain 

conditions, a formal power series FHzL has a C-fraction expansion if and only if 

it has a J-fraction expansion. J-fractions are also particularly relevant to the 

theory of moment problems, as well as in the study of orthogonality among 

families of polynomials.

ContinuedFraction:JFractionEquivalentPowerSeries

Let Ξ be a J-fraction of the form

Ξ �
a0

b1 + z -
a1

b2+z-
a2

b3+z-º

and let AkHzL, respectively BkHzL, denote the kth partial numerator, respectively 

denominator, of Ξ so that the ratio Ak HzL � Bk HzL denotes the kth approximant of 

Ξ. The equivalent power series of the J-fraction Ξ is the uniquely determined 

power series PH1 �zL whose expansion in descending powers of z agrees with the 

descending powers of z in Ak HzL � Bk HzL for the first 2 k terms, k � 1, 2, 3, … .

ContinuedFraction:KPeriodicFraction
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ContinuedFraction:KPeriodicFraction

A general continued fraction Ξ � b0 + K Ham �bmL is said to be k-periodic for some 

fixed positive integer k if the sequences 8am< and 8bm< are k-periodic after the 

first N elements, i.e., if aN+k p+q � aN+q and bN+k p+q � bN+q where N Î Z
+ is 

fixed, p ³ 1, and q Î 81, 2, 3<. Explicitly, then, a three-periodic fraction Ξ has the 

form

Ξ � b0 +
a1

b1 +

a2

b2 +
º

aN

bN +

aN+1

bN+1 +

aN+2

bN+2 +
º

aN+k

bN+k +

aN+1

bN+1 +

aN+2

bN+2 +
º

aN+k

bN+k +
º

for some fixed natural number N.

k-periodicity plays a significant role, e.g., in studying continued fraction conver�

gence, in particular the study of convergence by way of tail sequence analysis. 

Such ideas are explored in greater detail in the works of Lorentzen and 

Waadeland.

ContinuedFraction:LambdaSubQFraction

Let Λq � 2 cos HΠ �qL where q ³ 3 is an arbitrary odd integer. Given b0 Î Z, 

bn Î Z
+ for n � 1, 2, … , and Εn Î 8±1< for n ³ 0, one can define a generalized 

continued fraction ΞΛq
 called the a Λq-fraction which has the form

ΞΛ1
� b0 Λq +

Ε1

Λq b1 +
Ε2

Λq b2+
Ε3

Λq b3+º

.

By definition, Λq-fractions are obvious generalizations of the Τ-fraction (namely, 

the Τ-fraction is merely the Λ5-fraction since the golden ratio Φ � Λ5); as a 

result, fractions of this form are useful in many of the same ways as the Τ-

fractions and tend to come about by way of studying algebraic number fields 

generated by elements of the form Λq.

ContinuedFraction:Limit
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Let Ξ be a generalized continued fraction of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

whose elements aä and bä are positive integers and let Ξn � An � Bn denote the 

nth convergent of Ξ, i.e.

Ξn � b0 +
a1

b1 +
a2

b2+
a3

¸+
an

bn

.

If the sequence Ξn � An � Bn converges to a real number Α as n ® ¥, then Ξ is 

said to represent Α and Α is said to be the limit of Ξ.

ContinuedFraction:LimitPeriodicFraction

A limit periodic continued fraction is a continued fraction 

Ξ � KHbn �1L � @0; b1, b2, … D such that, for some complex number b, 

limn®¥ bn � b ¹ ¥.

ContinuedFraction:LoxodromicContinuedFraction

A p-periodic continued fraction Ξ � KHan �bnL is said to be loxodromic if Sp is 

loxodromic, i.e., if  R¤ �  RHΞL¤ < 1. Here, Sn is the Möbius transformation 

defined for all w Î C by the approximant function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

and R is the ratio

R �
1-u

1+u
for c ¹ 0, a + d ¹ 0

-1 for c ¹ 0, a + d � 0

associated to Sn � Ha w + bL � Hc w + dL where u � 1 - 4 D � Ha + dL2 , 

D � a d - b c ¹ 0.

ContinuedFraction:MFraction
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The generalized continued fraction ΞM is said to be an M-fraction provided that, 

for complex sequences Fn, Gn Î C,

ΞM �
F1

1 + G1 z +
z F2

1+G2 z+
z F3

1+G3 z+º

.

Defined similarly to the J-fraction, M-fractions correspond conceptually to the 

expansion of formal power series FHzL at two points whereas the J- and C-

fractions consist of expansions about a single point. First considered in the 

seminal paper by namesakes Murray and McCabe, M-fractions have proven 

especially useful in the approximation by rational functions of several large 

classes of functions.

ContinuedFraction:ModifiedSFraction

Given an S-fraction g along with meromorphic functions a, B : W Ì C ® C, any 

(meromorphic) continued fraction f  which satisfies B H f HaHzLLL � g HzL is called a 

modified S-fraction. Defined to extend the applicability of “standard” S-frac�

tions, modified S-fractions maintain many of the same useful analysis-theoretic 

properties thereof while providing a wider range of generalized solutions to 

various types of problems including moment problems and problems pertaining 

to functions of Hankel, Bessel, etc.

ContinuedFraction:NearestIntegerContinuedFraction
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For a real number Α Î R, the nearest integer continued fraction (NICF) associ�

ated to Α is the regular continued fraction Ξ of the form

Ξ � b0 + K
m=1

N 1

bm

where, here, successive elements bk, k � 1, 2, … , are integers found using the 

NICF expansion algorithm. Explicitly, the NICF Ξ associated to Α is computed 

recursively in terms of its nth convergents Ξn by way of the identity

Ξn � bn +
Εn+1

Ζn+1

,

where bn Î Z is the nearest integer to Ζn, Εn+1 Î 8±1<,  Ζn - bn¤ < 1 �2, and 

sgnHΕn+1L � sgnHΖn - bnL.

Given a real number Α with known continued fraction expansion 

Ξ � @b0, b1, … , bn, Βn+1D, bk Î Z for k � 1, 2, … , n, Βn+1 Î R, Hurwitz discovered 

a result for determining whether Ξ is the NICF expansion of Α. In particular, Ξ is 

the NICF expansion of Α precisely when:

1.  bk¤ ³ 2 for k � 1, 2, … , n

2. bä+1 is negative when bä � 2 and is positive when bä � -2

3. Βn+1 ³ 2 or Βn+1 < -2 and  bn - 1 � Βn+1¤ > 2.

ContinuedFraction:ParabolicContinuedFraction

A p-periodic continued fraction Ξ � KHan �bnL is said to be parabolic if Sp is 

parabolic, i.e., if R � RHΞL � 1, Sp ¹ Id. Here, Sn is the Möbius transformation 

defined for all w Î C by the approximant fucntion

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

and R is the ratio

R �
1-u

1+u
for c ¹ 0, a + d ¹ 0

-1 for c ¹ 0, a + d � 0

associated to Sn � Ha w + bL � Hc w + dL where u � 1 - 4 D � Ha + dL2 , 

D � a d - b c ¹ 0.

ContinuedFraction:PartialDenominator

88     Results.nb



The partial denominators of a generalized continued fraction Ξ of the form

Ξ � b0 + K
m=1

N am

bm

are the elements bk, k � 0, 1, 2, … .

ContinuedFraction:PartialNumerator

The partial numerators of a generalized continued fraction Ξ of the form

Ξ � b0 + K
m=1

N am

bm

are the elements ak, k � 1, 2, 3, … .

ContinuedFraction:PerronCaratheodoryContinuedFraction

Given sequences of complex numbers Αn, Βn with Αn ¹ 0 and 

Α2 n+1 � 1 - Β2 n Β2 n+1, the Perron-Carathé odory continued fraction is the 

generalized continued fraction

Β0 + K
n=1

¥

Α1 for n � 1

Αn z for n > 1 odd

1 for n even

Βn z for n even

Βn for n odd

.

ContinuedFraction:PFraction
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A generalized continued fraction ΞP is said to be a P-fraction if

ΞP � b0

1

b1 +
1

b2+
1

b3+º

,

where for each n � 0, 1, 2, … , bn � bn H1 �zL is a polynomial in 1 �z. Symboli�

cally, then, one can think of the elements bn of ΞP to be of the form

bn � â
m�-Nn

0

a-m

HnL
z

m
, n � 0, 1, 2, … ,

where Nn ³ 1 and aNn

HnL
¹ 0 for n � 1, 2, 3, … . Continued fractions of this type 

emerged as part of the work of Magnus while attempting to create a theory of 

fractional expansions of meromorphic functions analogous to the theory of 

continued fraction expansions of real numbers. The name P-fraction refers to 

the fact that, for all n, the continued fraction @bn; bn+1, bn+2, … D is defined to be 

the so-called principal part expansion for the Laurent power series LnHzL where

Ln HzL � â
m�-Nn

¥

a-m

HnL
z

m
, n � 0, 1, 2, … .

P-fractions are also related to the study of Padé  approximants.

ContinuedFraction:PippengerFraction

A Pippenger continued fraction is a continued fraction of the form

Ξ � 1 +
1

-1 + t1 1 +
1

-1+t2J1+
1

-1+t3H… L
N

where tk Î Z
+ and tk ³ 2 for Pippenger continued fractions 1 £ Ξ £ 2.

ContinuedFraction:PositivePerronCaratheodoryContinuedF

raction
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Given a sequence of complex numbers dn with dn ¹ 0 and  dn¤ < 1, the positive 

Perron-Carathé odory continued fraction is the Perron-Carathé odory continued 

fraction

d0 + K
n=1

¥

-2 d0 for n � 1

1 - dHn-1L�2
2

z for n > 1 odd

1 for n even

z for n � 1

dn�2 z for n even

dHn-1L�2 for n > 1 odd.

ContinuedFraction:PositiveThronFraction

A Thron fraction Ξ of the form

Ξ �
F1 z

1 + G1 z +
z F2

1+G2 z+
z F3

1+G3 z+º

is said to be a positive Thron fraction or a positive T-fraction if Fm, Gm > 0 for 

all m.

ContinuedFraction:RealJFraction

A J-fraction Ξ of the form

Ξ �
a1

z + b1 -
a2

z+b2-
a3

z+b3-º

is said to be a real J-fraction provided that am > 0 and that bm Î R for 

m � 1, 2, 3, … . Subtly, real J-fractions are connected to both C-fractions and 

modified S-fractions in the following way: A modified regular C-fraction ΞC of 

the form

ΞC �
a1

z +
a2

1+
a3

z+º

is a real J-fraction provided that it is also a modified S-fraction. As a result, 

many of the practical applications of C- and modified S-fractions are inherently 

applicable to real J-fractions as well.

ContinuedFraction:RegularCFraction

There are at least two distinct definitions for a regular C-fraction in reputable 

literature.

Some sources say that a C-fraction Ξ of the form

Ξ � b0 + K
m=1

¥ am z
Αm

1
,

am Î C � 80<, is regular provided that Αm � 1 for m ³ 1. Regular C-fractions which 

fall under this definition have strong connections to the theory of Padé  

approximations.

For the second definition, let P HzL � c0 + c1 z + c2 z
2 + º, c0 ¹ 0, be a formal 

power series with coefficients ck Î C and let Ξ be its corresponding continued 

fraction (i.e., its C-fraction) of the form

Ξ � c0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

subject to the “correspondence relations”

Hcn, cn-1, cn-2, … L

∆p,0

∆p,1

∆p,2

»

�

0 for Α0 + º + Αp < n < Α1 + º + Αp+1

H-1Lp
a1 a2 º ap+1 for n � Α1 + º + Αp+1,

where ∆ä, j denotes Kronecker’s delta. Such a continued fraction is said to be 

regular if every approximant Ξp � Ap HzL � Bp HzL, n � 0, 1, 2, … , of Ξ is a Padé  

approximant of PHzL.

There are a number of equivalent statements for the C-fraction Ξ being regular 

by way of the second definition, many of which are more explicitly-stated than 

the above. For example, if Ξp � Ap HzL � Bp HzL denotes the pth approximant of Ξ 

and if the numerator, respectively denominator, of Ξp has degree sp, respec�

tively tp, then Ξ is regular if and only if there exists a sequence 8rn< of natural 

numbers satisfying

Α1 + Α2 + º + Αp+1 � rp + sp + tp + 1,

p � 0, 1, 2, … . Moreover, this is equivalent to requiring that, for p � 1, 2, 3, … ,

s2 p-1 � Α1 + Α3 + º + Α2 p-1

t2 p � Α2 + Α4 + º + Α2 p,

while simultaneously requiring the existence of a sequence 8kn< of integers 

which satisfy

s2 p £ t2 p + kp

s2 p+1 ³ t2 p+1 + kp + 1

s2 p+1 ³ t2 p + kp + 1

s2 p+1 £ t2 p+2 + kp

for p � 0, 1, 2, … .

As exemplified in the definition above, regular C-fractions are intimately 

connected to the study of formal power series and Padé  approximants, as well 

as to the study of meromorphic complex-valued functions. Extensive exposition 

of this topic can be found in the works of H.S. Wall.
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There are at least two distinct definitions for a regular C-fraction in reputable 

literature.

Some sources say that a C-fraction Ξ of the form

Ξ � b0 + K
m=1

¥ am z
Αm

1
,

am Î C � 80<, is regular provided that Αm � 1 for m ³ 1. Regular C-fractions which 

fall under this definition have strong connections to the theory of Padé  

approximations.

For the second definition, let P HzL � c0 + c1 z + c2 z
2 + º, c0 ¹ 0, be a formal 

power series with coefficients ck Î C and let Ξ be its corresponding continued 

fraction (i.e., its C-fraction) of the form

Ξ � c0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

subject to the “correspondence relations”

Hcn, cn-1, cn-2, … L

∆p,0

∆p,1

∆p,2

»

�

0 for Α0 + º + Αp < n < Α1 + º + Αp+1

H-1Lp
a1 a2 º ap+1 for n � Α1 + º + Αp+1,

where ∆ä, j denotes Kronecker’s delta. Such a continued fraction is said to be 

regular if every approximant Ξp � Ap HzL � Bp HzL, n � 0, 1, 2, … , of Ξ is a Padé  

approximant of PHzL.

There are a number of equivalent statements for the C-fraction Ξ being regular 

by way of the second definition, many of which are more explicitly-stated than 

the above. For example, if Ξp � Ap HzL � Bp HzL denotes the pth approximant of Ξ 

and if the numerator, respectively denominator, of Ξp has degree sp, respec�

tively tp, then Ξ is regular if and only if there exists a sequence 8rn< of natural 

numbers satisfying

Α1 + Α2 + º + Αp+1 � rp + sp + tp + 1,

p � 0, 1, 2, … . Moreover, this is equivalent to requiring that, for p � 1, 2, 3, … ,

s2 p-1 � Α1 + Α3 + º + Α2 p-1

t2 p � Α2 + Α4 + º + Α2 p,

while simultaneously requiring the existence of a sequence 8kn< of integers 

which satisfy

s2 p £ t2 p + kp

s2 p+1 ³ t2 p+1 + kp + 1

s2 p+1 ³ t2 p + kp + 1

s2 p+1 £ t2 p+2 + kp

for p � 0, 1, 2, … .

As exemplified in the definition above, regular C-fractions are intimately 

connected to the study of formal power series and Padé  approximants, as well 

as to the study of meromorphic complex-valued functions. Extensive exposition 

of this topic can be found in the works of H.S. Wall.
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There are at least two distinct definitions for a regular C-fraction in reputable 

literature.

Some sources say that a C-fraction Ξ of the form

Ξ � b0 + K
m=1

¥ am z
Αm

1
,

am Î C � 80<, is regular provided that Αm � 1 for m ³ 1. Regular C-fractions which 

fall under this definition have strong connections to the theory of Padé  

approximations.

For the second definition, let P HzL � c0 + c1 z + c2 z
2 + º, c0 ¹ 0, be a formal 

power series with coefficients ck Î C and let Ξ be its corresponding continued 

fraction (i.e., its C-fraction) of the form

Ξ � c0 +
a1 z

Α1

1 +
a2 z

Α2

1+
a3 z

Α
3

1+º

subject to the “correspondence relations”

Hcn, cn-1, cn-2, … L

∆p,0

∆p,1

∆p,2

»

�

0 for Α0 + º + Αp < n < Α1 + º + Αp+1

H-1Lp
a1 a2 º ap+1 for n � Α1 + º + Αp+1,

where ∆ä, j denotes Kronecker’s delta. Such a continued fraction is said to be 

regular if every approximant Ξp � Ap HzL � Bp HzL, n � 0, 1, 2, … , of Ξ is a Padé  

approximant of PHzL.

There are a number of equivalent statements for the C-fraction Ξ being regular 

by way of the second definition, many of which are more explicitly-stated than 

the above. For example, if Ξp � Ap HzL � Bp HzL denotes the pth approximant of Ξ 

and if the numerator, respectively denominator, of Ξp has degree sp, respec�

tively tp, then Ξ is regular if and only if there exists a sequence 8rn< of natural 

numbers satisfying

Α1 + Α2 + º + Αp+1 � rp + sp + tp + 1,

p � 0, 1, 2, … . Moreover, this is equivalent to requiring that, for p � 1, 2, 3, … ,

s2 p-1 � Α1 + Α3 + º + Α2 p-1

t2 p � Α2 + Α4 + º + Α2 p,

while simultaneously requiring the existence of a sequence 8kn< of integers 

which satisfy

s2 p £ t2 p + kp

s2 p+1 ³ t2 p+1 + kp + 1

s2 p+1 ³ t2 p + kp + 1

s2 p+1 £ t2 p+2 + kp

for p � 0, 1, 2, … .

As exemplified in the definition above, regular C-fractions are intimately 

connected to the study of formal power series and Padé  approximants, as well 

as to the study of meromorphic complex-valued functions. Extensive exposition 

of this topic can be found in the works of H.S. Wall.

ContinuedFraction:Remainder

Let Ξ be a real number with regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

(with M possibly ¥ for irrational numbers) with convergents An � Bn.

The nth remainder rn of the continued fraction is defined through

Ξ � b0 + K
k=1

n 1

I1 - ∆k,nM bk + rn

.

The nth remainder (also called tail) rn fulfills the following identities:

Ξ � b0 +
An-1 rn + An-2

Bn-1 rn + Bn-2

Ξ -
An-1

Bn-1

�
1

Bn-1HBn-1 rn - Bn-2L
.

ContinuedFraction:RiccatiSolution

In general, a Riccati differential equation is any first-order differential equation 

that is quadratic in the unknown function yHxL, and while there are a consider�

able number of differential equations attributed to Riccati, perhaps the most 

commonly agreed upon is the general equation

â y

â x

� h HxL + g HxL y HxL + f HxL y
2 HxL

where f HxL, g HxL, h HxL are all continuous functions which are sufficiently 

differentiable for which f HxL, h HxL ¹ 0. Devised as a method to approximate 

solutions to differential equations of the form y¢ HxL � f Hx, yL by way of a 

second order Taylor approximation in y, a considerable number of solution 

techniques have been employed throughout the centuries, perhaps the most 

novel of which is the continued fraction solution first employed by Euler which 

has since been elaborated and expanded upon in great generality. A brief 

explanation of one such variant (stemming from Lagrange, as employed by 

Kurilin) follows.

Kurilin’s method is based on approximating y by a sequence yn which is spe�

cially defined depending upon how the zeroth approximation y0 � Ξ0 is chosen. 

Once Ξ0 is defined, Ξn (and hence yn, which depends upon fn, gn, and hn) is 

defined recursively by the relation

yn-1 � Ξn-1 HxL @1 + yn HxLD-1
.

Finally, it follows from a simple analysis that the regular continued fraction Ξ, 

defined to be the limit of the convergents An � Bn � @Ξ0; Ξ1, Ξ2, … , ΞnD as n ® ¥, 

satisfies the generalized Riccati equation above.

Despite his solution being somewhat involved with a number of cases consid�

ered, the easiest and perhaps most illustrative of Kurilin’s defined cases comes 

when Ξ0 � ± -h � f . In this case, one can prove that the nth approximation yn 

of y satisfies y
n

¢ � fn HxL y
n

2 + gn HxL yn + hn HxL, that ΞnHxL has the form

Ξn HxL � ±
Ξ

n-1
¢ HxL - gn-1 HxL Ξn-1 HxL

hn-1HxL

1�2

for n ³ 2 and that for n ³ 2, the remaining approximant functions fn, gn, hn 

satisfy the recursions fn HxL � Ξn-1 HxL fn-1 HxL,

hn HxL �
Ξ

n-1
¢ HxL

Ξn-1HxL
- hn-1 HxL - 2

hn-2HxL

Ξn-2HxL
,

gn � Ξ
n-1
¢ HxL

Ξn-1HxL
- gn-1 HxL -

2

Ξn-1HxL
Ξ

n-2
¢

Ξn-2 + 2 gn-2 HxL.

To complete the recurrence definition, one defines g0 HxL � g HxL, f0 HxL � f HxL, 

and h0 HxL � h HxL, and uses for n � 1 the equations

Ξn HxL � ± -
hnHxL

fnHxL

1�2

,

gn HxL �
Ξ

n-1
¢ HxL

Ξn-1HxL
- gn-1 HxL - 2

hn-1HxL

Ξn-1HxL
,

fn HxL � -hn-1 HxL � Ξn-1 HxL, and hn HxL � -gn-1 HxL + Ξ
n-1
¢ HxL � Ξn-1 HxL. A more 

detailed derivation can be found in the works of Chisholm.
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In general, a Riccati differential equation is any first-order differential equation 

that is quadratic in the unknown function yHxL, and while there are a consider�

able number of differential equations attributed to Riccati, perhaps the most 

commonly agreed upon is the general equation

â y

â x

� h HxL + g HxL y HxL + f HxL y
2 HxL

where f HxL, g HxL, h HxL are all continuous functions which are sufficiently 

differentiable for which f HxL, h HxL ¹ 0. Devised as a method to approximate 

solutions to differential equations of the form y¢ HxL � f Hx, yL by way of a 

second order Taylor approximation in y, a considerable number of solution 

techniques have been employed throughout the centuries, perhaps the most 

novel of which is the continued fraction solution first employed by Euler which 

has since been elaborated and expanded upon in great generality. A brief 

explanation of one such variant (stemming from Lagrange, as employed by 

Kurilin) follows.

Kurilin’s method is based on approximating y by a sequence yn which is spe�

cially defined depending upon how the zeroth approximation y0 � Ξ0 is chosen. 

Once Ξ0 is defined, Ξn (and hence yn, which depends upon fn, gn, and hn) is 

defined recursively by the relation

yn-1 � Ξn-1 HxL @1 + yn HxLD-1
.

Finally, it follows from a simple analysis that the regular continued fraction Ξ, 

defined to be the limit of the convergents An � Bn � @Ξ0; Ξ1, Ξ2, … , ΞnD as n ® ¥, 

satisfies the generalized Riccati equation above.

Despite his solution being somewhat involved with a number of cases consid�

ered, the easiest and perhaps most illustrative of Kurilin’s defined cases comes 

when Ξ0 � ± -h � f . In this case, one can prove that the nth approximation yn 

of y satisfies y
n

¢ � fn HxL y
n

2 + gn HxL yn + hn HxL, that ΞnHxL has the form

Ξn HxL � ±
Ξ

n-1
¢ HxL - gn-1 HxL Ξn-1 HxL

hn-1HxL

1�2

for n ³ 2 and that for n ³ 2, the remaining approximant functions fn, gn, hn 

satisfy the recursions fn HxL � Ξn-1 HxL fn-1 HxL,

hn HxL �
Ξ

n-1
¢ HxL

Ξn-1HxL
- hn-1 HxL - 2

hn-2HxL

Ξn-2HxL
,

gn � Ξ
n-1
¢ HxL

Ξn-1HxL
- gn-1 HxL -

2

Ξn-1HxL
Ξ

n-2
¢

Ξn-2 + 2 gn-2 HxL.

To complete the recurrence definition, one defines g0 HxL � g HxL, f0 HxL � f HxL, 

and h0 HxL � h HxL, and uses for n � 1 the equations

Ξn HxL � ± -
hnHxL

fnHxL

1�2

,

gn HxL �
Ξ

n-1
¢ HxL

Ξn-1HxL
- gn-1 HxL - 2

hn-1HxL

Ξn-1HxL
,

fn HxL � -hn-1 HxL � Ξn-1 HxL, and hn HxL � -gn-1 HxL + Ξ
n-1
¢ HxL � Ξn-1 HxL. A more 

detailed derivation can be found in the works of Chisholm.

ContinuedFraction:RogersRamanujanContinuedFraction

Given sequences of complex numbers an with an ¹ 0 and complex q, the Rogers-

Ramanujan continued fraction is the generalized continued fraction

q
1�5

+ K
n=1

¥ q
n

1
.

ContinuedFraction:RosenFraction
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ContinuedFraction:RosenFraction

Let Ξ be a real number. Then the Rosen continued fraction expansion for 

q Î Z
+, q ³ 3, and Λq � 2 cosHΠ �qL

Ξ � ¶0 b0 + K
j=1

N ¶ j

b j

(where N is possibly infinity), ¶ j Î 8-1, 1<, and b j Î Z
+ can be calculated 

through the repeated application of the map Τ: [-Λ �2, Λ �2 ® @Λ �2, Λ �2

ΤHxL �
sgnHxL

x

- Λ
sgnHxL

Λ x

+
1

2
.

ContinuedFraction:RudinShapiroContinuedFraction

Let r � 8rn<
n�1
¥  be a sequence whose nth term rn is defined to be +1 if the 

number of occurrences of the string “11” in the binary representation of n is 

even and is defined to be -1 otherwise. The sequence r is called the Rudin-

Shapiro sequence and the regular continued fraction Ξ � @0; r0, r1, r2, … D is 
called the Rudin-Shapiro fraction associated to r. This construction can be also 

generalized by way of the transformation 1 # a, -1 # b for distinct positive 

integers a, b Î Z
+, whereby rk Î 8a, b< for all k � 0, 1, 2, … .

Unlike the similarly-defined Baum-Sweet fraction, the Rudin-Shapiro fraction is 

the focus of considerably more literature, having been generalized and applied 

to a variety of problems in areas such as polynomial theory, moment problems, 

and multiresolution analysis. Moreover, one of the more well-known properties 

of the Rudin-Shapiro fraction Ξ is that it is transcendental, a result which can be 

proved by advanced numerical methods found, e.g., in the work of 

Adamczewski.

ContinuedFraction:SchmidtExpansion
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The Schmidt expansion of a complex number z � a + b ä Î C, b ³ 0, assigns to z a 

complex continued fraction Ξ of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

¸

whose successive approximants Ξn � An � Bn are determined by the Schmidt 

regular chain algorithm and whose elements ak, bk are Gaussian integers. The 

Schmidt expansion is an alternative to the more widely-utilized Hurwitz expan�

sion and is known for assigning overall more accurate convergents to z despite 

having a lengthier and oftentimes slower computational implementation.

ContinuedFraction:SchurNevanlinnaFraction

Given a sequence of complex-valued functions 8 fs<
s�0
¥  which satisfy the recur�

sive relation

fs+1 HzL �
fs HzL - fs H0L

1 - fs H0L fs HzL
×
1

z

for s � 0, 1, 2, … , the associated Schur-Nevanlinna continued fraction Ξ0 for 

f0HzL has the form

Ξ0 �
1

f0H0L
+

c0

1 + d0 z +
c1 z

1+d1 z+º
cr z

1+dr z+º

.

Subsequent continued fractions Ξs are formed by substituting Ξ0 into the afore�

mentioned recursion.

ContinuedFraction:SemiConvergent
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Let Ξ be a real number with regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

(for M possibly ¥) with convergents An � Bn.

A fraction p �q is called a best rational approximation of Ξ if

Ξ -
p

q

< Ξ -
r

s

for any integers r and s such that s £ q and p �q ¹ r � s.

Every convergent An � Bn is best rational approximation of Ξ, but not all best 

rational approximations are convergents of Ξ.

The best rational approximation of Ξ that are not convergents are called semi-

convergents.

ContinuedFractionSemiConvergentRepresentation

Let Ξ be a real number with regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

(with M possibly ¥) with convergents An � Bn.

All semi-convergents Sn,g of Ξ are of the form

Sn,g �
An + g An+1

Bn + g Bn+1

where g Î Z
+ and

bn+2

2
< g < bn+2

and potentially also for g � dbn+2 �2t.

Semi-convergents have the continued fraction expansion

Sn,g � b0 + K
k=1

M 1

∆M,k h + I1 - ∆M,kM bk

where M ³ 1, bk > 1 and 1 £ h £ bk.

ContinuedFraction:SequenceOfRightTails
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Let Ξ be a generalized continued fraction of the form

Ξ � K
m=1

¥ bm

1
,

bk Î C � 80<, k � 1, 2, 3, … , and suppose that Ξ converges to some extended 

complex number Α Î C
`
. Define f

H0L � f  and

f
HnL � K

m=n+1

¥ bm

1

for n � 1, 2, 3, … , The sequence 9 f
HnL=

n�0

¥
 is called the sequence of right tails of 

Ξ.

ContinuedFraction:SFraction

Consider the family of generalized continued fractions ΞS which have the form

ΞS �
a1 z

1 +
a2 z

1+
a3 z

1+º

,

where the elements an are all strictly positive real numbers. Fractions of this 

form are called Stieltjes-fractions or S-fractions due to their prevalence in the 

work of Stieltjes and can be viewed as modifications of the other “named 

families” of continued fractions in several different ways. For example, ΞS can 

be viewed as a C-fraction for which b0 � 0, an Î R
+, and Αn � 1 for n � 1, 2, … ; 

at the same time, it can be considered as a modified Thron fraction with 

Fn � an Î R
+ and with Gn � 0 for all n. From an application standpoint, the S-

fraction is used in the theory of moment problems, as well as in the related 

study of formal power and Taylor series.

ContinuedFraction:SingularContinuedFraction

A continued fraction Ξ of the form

Ξ � b0 + K
m=1

N am

bm

(here, N may be infinity) is said to be singular if for all k ³ 1, bk ³ 2 and 

bk + ak ³ 2.

ContinuedFraction:Singularization

98     Results.nb



Singularization of a regular continued fraction is the removal of 1’s in the 

partial denominators. Let the regular continued fraction of Ξ have the jth partial 

denominator with value a j � 1

Ξ � a0 +
1

a1 +
1

a2+
1

… +
1

a
j-1

+

1

1+

1

a
j+1

+

1

a
j+2

+

1

…

,

then this 1 can be singularized to the new continued fraction

Ξ � a0 +
1

a1 +
1

a2+
1

… +
1

Ja
j-1

+1N+

1

1-

1

a
j+1

+

1

a
j+2

+

1

…

.

ContinuedFraction:SleszynskiPringsheimContinuedFraction

Given sequences of complex numbers an, bn with for n > 0,  bn¤ >  an¤ + 1, the 

lezy sky-Pringsheim continued fraction is the generalized continued fraction

b0 + K
n=1

¥ an

bn

.

ContinuedFractionsOfGeneralizedGaussMap
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Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Gauss map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then for some Ξ Î H0, 1L the generalized regular continued fraction expansion

Ξ � K
j=1

n 1

b j

can be obtained through

b j � T
k

j
HΞL

and inversely

Ξ � K
j=1

n 1

b j

� A
k

-1
B

b1 A
k

-1
B

b2 … A
k

-1
B

bn A
k

-1H¥L

where the maps Ak and B are defined through

AkHxL � k

x

1 - x

BHxL � 1 + x.

ContinuedFractionsOfGeneralizedRenyiMap

Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Ré nyi map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then for some Ξ Î H0, 1L the generalized regular continued fraction expansion

Ξ � K
j=1

n 1

b j

can be obtained through

b j � T
k

j
HΞL

and inversely

Ξ � K
j=1

n 1

b j

� A
k

-1
B

b1 A
k

-1
B

b2 … A
k

-1
B

bn A
k

-1H¥L

where the maps Ak and B are defined through

AkHxL � k

x

1 - x

BHxL � 1 + x.

ContinuedFractionsWithGivenConvergents
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ContinuedFractionsWithGivenConvergents

Let An, Bn for n � 0, 1, …  be two given sequences with

B0 � 1

An Bn-1 - An-1 Bn ¹ 0.

Then the continued fraction

Ξ � b0 + K
k=1

N ak

bk

will have the convergents pn �qn if

b0 � A0

a1 � A1 B0 - A0 B1

b1 � B1

ak �
An-1 Bn - An Bn-1

An-1 Bn-2 - Bn-2 Bn-1

bk �
An Bn-2 - An-2 Bn

An-1 Bn-2 - An-2 Bn-1

.

ContinuedFraction:SymplecticContinuedFraction

Let M and J be block matrices of the form

M � A B

C D

J � 0 I

-I 0

whose entries themselves are square matrices, I the square identity matrix of 

appropriate dimension. Given a collection 8Mm, Mm+1, Mm+2, … < of matrices 

satisfying M
k

T
J Mk � J for all k � m, m + 1, m + 2, … , a symplectic continued 

fraction is defined to be the sequence of formal approximants 8TMm Mm+1 º Mn
H¥L<, 

n � m, m + 1, m + 2, … , where TMHZL is the (matrix) Möbius transformation of 

the form

TM HZL � HA Z + BL HC Z + DL-1

and where TM H¥L � A C
-1 by definition.

ContinuedFraction:TauFraction
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Let Φ � I1 + 5 M �2 denote the golden ratio. Then if b0 Î Z is an arbitrary 

integer, if the sequence bn is a collection of positive integers for n � 1, 2, 3, … , 

and if Εn Î 8±1< for each n, then the generalized continued fraction ΞΤ of the 

form

ΞΤ � b0 +
Ε1

Φ b1 +
Ε2

Φ b2+
Ε3

Φ b3+º

is said to be a Τ-fraction. Τ-fractions are a regular part of the study of algebraic 

number fields, particularly the one generated by Φ � 2 cos HΠ �5L.

The fraction gets its name from the golden ratio Φ, which is sometimes also 

denoted Τ.

ContinuedFraction:TFraction

A generalized continued fraction ΞT of the form

ΞT �
z

1 + G1 z +
z

1+G2 z+
z

1+G3 z+º

for Gn a complex sequence, n � 1, 2, 3, … , is called a T-fraction. Note, in 

particular, that T-fractions are specialized versions of the more general Thron 

fraction which result from setting Fn � 1 for all n � 1, 2, 3, … .

ContinuedFraction:ThieleFraction
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The so-called Thiele fraction is a generalized continued fraction Ξa p p r of the 

form

Ξappr � b0 +
z - z0

b1 +
z-z1

b2+
z-z2

b3+º

where here, the elements zn and bn are specially-chosen complex numbers 

defined as follows. Given a function f  whose values are known at a collection 

8z0, z1, … < of distinct points, zn Î C, the collection of inverse differences 

j @z1, … , zkD for f HzL are formed using the recursive formulas:

• j0@zkD � f HzkL, k ³ 0.

• j1@zk, z{D � z{-zk

j0@z{D-j0@zkD
, { > k ³ 0.

• j{@z0, … , z{D � z{-z{-1

j{-1@z0,… ,z{-2,z{D-j{-1@z0,… ,z{-1D
, { ³ 1.

The Thiele fraction Ξappr was defined as part of Thiele’s work on approximation 

theory and utilizes the collection 8z0, … , zn< in two ways, both explicitly in its 

partial numerators and implicitly by defining b0 � j0 @z0D and bk � jk @z0, … , zkD 
for k � 1, 2, … . In this way, the fraction Ξappr � Ξappr HzL is easily seen to be an 

interpolating function for f HzL and as such has a wide variety of uses in the 

approximation theory of arbitrary complex-valued functions.

ContinuedFraction:ThreePeriodicFraction

A general continued fraction Ξ � b0 + K Ham �bmL is said to be three-periodic if 

the sequences 8am< and 8bm< are three-periodic after the first N elements, i.e., if 

aN+3 p+q � aN+q and bN+3 p+q � bN+q where N Î Z
+ fixed, p ³ 1, k is a fixed 

positive integer, and q Î 81, 2, 3, … , k<. Explicitly, then, a k-periodic fraction Ξ 

has the form

Ξ � b0 +
a1

b1 +

a2

b2 +
º

aN

bN +

aN+1

bN+1 +

aN+2

bN+2 +

aN+3

bN+3 +

aN+1

bN+1 +

aN+2

bN+2 +

aN+3

bN+3 +
º

for some fixed positive integer N.

Worth noting is that a 3-periodic continued fraction is just a special case of a so-

called k-periodic continued fraction (for k � 3) where k-periodicity means that 

aN+k p+q � aN+q and bN+k p+q � bN+q for N Î Z
+ fixed, p ³ 1, k is a fixed positive 

integer, and q Î 81, 2, 3<. k-periodicity plays a significant role, e.g., in studying 

continued fraction convergence, in particular the study of convergence by way 

of tail sequence analysis. Such ideas are explored in greater detail in the works 

of Lorentzen and Waadeland.

ContinuedFraction:ThreeTermRecurrenceMinimalSolution
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ContinuedFraction:ThreeTermRecurrenceMinimalSolution

A non-trivial solution 8 fn<
n�-1
¥  of a three-term recurrence relation

Xn � bn Xn-1 + an Xn-2,

an, bn Î C for n � 1, 2, 3, … , ak ¹ 0 for all k, is said to be minimal if for any 

other solution 8gn<,

lim
n®¥

fn

gn

� 0.

A general three-term recurrence relation may or may not have a minimal 

solution, and any non-minimal solution is said to be dominant.

A number of significant theorems pertaining to minimal solutions of recurrence 

relations hinge on the theory of continued fractions. For example, Pincherle 

proved that for sequences 8an< and 8bn< of a normed field F (with an ¹ 0 for 

n � 1, 2, 3, … ), the three-term recurrence relation

Xn � bn Xn-1 + an Xn-2

has a minimal solution 8hn<, hn Î F for all n, if and only if the associated contin�

ued fraction Ξ of the form

Ξ � K
m=1

¥ am

bm

converges in F Ü 8¥< and, moreover, that such a solution satisfies the associ�

ated continued fraction relation

hm

hm-1

�
-am

bm

+ K
n�m+1

¥ an

bn

for all m. A considerable amount of information concerning the role of contin�

ued fractions in three-term recurrence relations and minimal solutions thereto 

can be found in the works of Pincherle and Gautschi.

ContinuedFraction:ThreeTermRecurrenceSolution
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A sequence 8Xn<
n�-1
¥  of complex numbers is a solution of the three-term recur�

rence relation

Xn � bn Xn-1 + an Xn-2

provided that all consecutive triples of its elements are solutions. Here, 

an, bn Î C for n � 1, 2, 3, …  and ak ¹ 0 for all k. A well-known fact in the study 

of continued fractions is that the approximants Ξn � An � Bn of an arbitrary 

continued fraction Ξ satisfy the three-term recurrence relation with the initial 

conditions A-1 � 1, A0 � b0, B-1 � 0, and B0 � 1.

Continued fractions are connected to the three-term recurrence relation at an 

even deeper level as well. For example, one can show that the solution space 

for the three-term recurrence relation is a linear space L of dimension 2 over C 

and that the canonical numerators and denominators 8An< and 8Bn< of KHan �bnL 
actually form a basis for L. It can also be shown that the recurrence relation has 

a so-called minimal solution precisely when the continued fraction

Ξ � K
m=1

¥ am

bm

converges in C
`
. A considerable amount of information concerning the role of 

continued fractions in three-term recurrence relations and minimal solutions 

thereto can be found in the works of Pincherle and Gautschi.

ContinuedFraction:ThronFraction
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Consider a generalized continued fraction ΞTh of the form

ΞTh �
F1 z

1 + G1 z +
z F2

1+G2 z+
z F3

1+G3 z+º

where Fn, Gn are sequences of complex numbers and Fk ¹ 0 for k � 1, 2, … . 

Such fractions are called generalized T-fractions or Thron fractions after mathe�

matician Wolfgang Thron. In an obvious way, Thron fractions are generaliza�

tions of the M-fraction obtained by replacing F1 ¹ 0 in a standard M-fraction ΞM 

with F1 z. In addition, Thron fractions are often further classified based on 

properties of the elements Fn, Gn of ΞTh. For example:

• Thron fractions ΞT for which Fn � 1, n � 1, 2, 3, … , are called T-fractions.

• Thron fractions which satisfy Fm, Gm > 0 for all m are called positive T-

fractions.

• Thron fractions for which Fm, Gm Î R � 80< and which satisfy the conditions 

F2 m-1 F2 m > 0, F2 m-1 �G2 m-1 > 0 are called alternating positive term fractions or 

APT-fractions.

Unsurprisingly, as the expansive classification suggests, the applications of 

Thron fractions are also large in number. In the same way that C-, J-, and M-

fractions play crucial roles in the understanding of formal power series, for 

example, Thron fractions— and in particular, T-fractions— are critical tools used 

in the study of formal Taylor series. Like the above-mentioned M-fractions, 

Thron fractions and the offshoots thereof correspond to expansions of these 

formal Taylor series at two points. For more information concerning the variety 

of Thron fractions as well as other continued fraction results from Thron’s 

extensive work.

ContinuedFraction:TwoDimensional

A two-dimensional continued fraction is an expression of the form

ΞHx, yL � B0 + K
j=1

¥ a j x y

B j

where

B j � b0

H jL
+ K

k=1

¥ c
k

H jL
x

1
+ K

k=1

¥ d
k

H jL
y

1
.

ConvergenceDomainOfTFractions
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Let Ξ be a Thiele fraction with periodic limits,

Ξ � K
n=1

¥ an z

1 + bn z

lim
n®¥

al+m n � a
l

lim
n®¥

bl+m n � b
l
.

Let

D � C - HG Ü KL

be a domain for f  which is a meromorphic function with poles V in D.  Let K be 

a finite set and X be any compact set in D disjoint from V.  Let

E � 0, 4 H-1Lm ä
l=1

m

a
l

be a real interval, G be defined by

G � 8z z
-m ä

i=1

m
0 z a

i

1 1 + z b
i

2

Î E,

D1 � C - G

be a domain, Dz0
HΕL be a disk with center z0 in G of radius Ε, and

D2 � D1 Ü Dz0
HΕL

be a domain.  Then

"X , Ξ converges to f in X,

the number of elements in K £ H-1 + mL m,

if b
l � 0, then the number of elements in K £ dm Hm - 1L �2t,

f  has a meromorphic continuation to D1 and it has no continuation to D2 for 

any choice of z0 and Ε.

ConvergenceOfConstantNumeratorContinuedFraction

Let Ξ be the continued fraction expansion

Ξ � K
k=1

¥ ∆k,1 + I1 - ∆k,1M c

1
.

Then Ξ converges for c Î C � H-¥, -1 �4L.

ConvergenceOfDiagonalPadeApproximantsForAnalyticFunc

tionsWithFiniteNumberOfBranchPoints
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Let f  be a multivalued holomorphic function, S be a finite set where S Ì C,

W � @Riemann sphereD - S

be the domain of f , g be an analytic continuation of f  at infinity on a domain 

D, Rn  be the Padé  approximants diagonal for f ; then there is a unique domain 

D Ì W that is maximal by inclusion among domains where Rn converges in 

capacity on compact sets to a single-valued g on D.

ConvergenceOfEllipticContinuedFractions

An arbitrary p-periodic elliptic continued fraction Ξ � KHan �bnL diverges gener�

ally, and because convergence in the classical sense implies convergence in the 

general sense, Ξ elliptic also fails to converge classically. The statement of this 

fact can be found in the work, e.g., of Lorentzen and Waadeland and can be 

justified by noting that the sequence 8SnHΞL< corresponding to an elliptic contin�

ued fraction Ξ is totally non-restrained where here, Sn is the Möbius transforma�

tion defined for all w Î C by the approximant function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

Worth noting is that requiring an elliptic continued fraction to satisfy additional 

criteria may indeed alter its convergence behavior. For example, the construc�

tion of an elliptic limit 1-periodic continued fraction which converges can be 

found in the works of Gill, who also gives classification criteria for the conver�

gence of limit-periodic continued fractions based on the relative convergence 

rates of the Hn pLth tail of SnHΞL.

ConvergenceOfIdentityTypeContinuedFractions
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An arbitrary p-periodic identity-type continued fraction Ξ � KHan �bnL diverges 

generally, and because convergence in the classical sense implies convergence 

in the general sense, Ξ elliptic also fails to converge classically. The statement of 

this fact can be found in the work, e.g., of Lorentzen and Waadeland and can 

be justified by noting that the sequence 8SnHΞL< corresponding to an identity-

type continued fraction Ξ is totally non-restrained where here, Sn is the Möbius 

transformation defined for all w Î C by the approximant function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

Worth noting is that the aforementioned convergence properties of identity-

type continued fractions identically mimic those for elliptic fractions. Unlike 

elliptic fractions whose convergence behavior can be altered by enforcing 

additional criteria, the literature mentions no such alterations for identity-type 

fractions.

ConvergenceOfLimitPeriodicContinuedFractions

The limit periodic continued fraction Ξ � KH1 �bnL � @0; b1, b2, … D converges to 

b � 1 �4 if  bn - H-1 �4L¤ < 1 �4 I4 n
2 - 1M for all n � 1, 2, … .

ConvergenceOfLoxodromicContinuedFractions
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An arbitrary p-periodic loxodromic continued fraction Ξ � KHan �bnL converges 

in the general sense to one of the two fixed points of the sequence 9Sp=, namely 

to its attracting fixed point x Î C Ü 8¥<. On the other hand, if y denotes the 

repelling fixed point of the sequence Sn, then Ξ is guaranteed to converge in the 

classical sense if and only if Sk H0L ¹ y for all k � 1, 2, 3, … . Here, Sn is the 

Möbius transformation defined for all w Î C by the approximant function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

Because they are only conditionally convergent in the classical sense, loxo�

dromic fractions fail to converge uniformly in any nontrivial metric. In addition, 

because of the “closeness” with which loxodromic fractions Ξ are related to the 

parabolic fractions, a seemingly unpredictable pattern of convergent behavior is 

obtained by implementing stricter structural rules on Ξ. For example, for Ξ limit 

p-periodic, one generally has to consider the value p as well as the speed with 

which the elements an, bn of Ξ converge to their respective limits. Such details 

are covered in more depth in the works of Lorentzen and Waadeland and its 

references.

ConvergenceOfPadeApproximantsForExponentialFunction

Let

f HzL � ã
z

and Rn,mHzL be its Padé  approximants and let pi and qi be the subsequences.  

Then given

lim
i®¥

Hpi + qiL � ¥,

it follows that

lim
i®¥

Rpi,qi
HzL � f HzL.

ConvergenceOfParabolicContinuedFractions
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An arbitrary p-periodic parabolic continued fraction Ξ � KHan �bnL converges in 

the general sense to the single fixed point x of the sequence 9Sp=. Moreover, 

because Ξ parabolic if and only if the sequence 9Sp= is and because 9SpHwL= can 

be shown to converge to x for every w Î C, one can easily conclude by way of 

analyzing its tail-values that Ξ also converges to x in the classical sense. Here, 

Sn is the Möbius transformation defined for all w Î C by the approximant 

function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

Lorentzen and Waadeland point out that despite their apparent good behavior, 

parabolic continued fractions fail to converge according to other, more strin�

gent definitions. For example, one can show that Ξ parabolic still fails to con�

verge uniformly to x in C Ü 8¥<, even when the metric considered is the 

chordal metric. In addition, because of the “closeness” with which parabolic 

fractions Ξ are related to the always-divergent elliptic fractions, a seemingly 

unpredictable pattern of convergence behavior is obtained by implementing 

stricter structural rules on Ξ. For example, for Ξ limit p-periodic, one generally 

has to consider the value p as well as the speed with which the elements an, bn 

of Ξ converge to their respective limits. Such details are covered in more depth 

in the works of Lorentzen and Waadeland and its references.

ConvergenceOfRogersRamanujanContinuedFractionAtPrimi

tiveRootsOfUnity

Let RHqL be the Rogers-Ramanujan continued fraction and KHqL be

KHqL �
q

1�5

RHqL
.

Then there exists an uncountable constructible set G Ì 8z :  z¤ £ 1< such that KHyL 

does not converge generally for all y Î G.

ConvergenceRadiusOfPadeApproximantRows
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Let f  be a meromorphic function, and DHmL be the largest complex disk where f  

has less than or equal to m poles, and dHmL be the divisor of its poles.

Let Tm,n be the mth row Padé  approximants, Rm be the radius of DHmL, a be an 

element of C - 0, UHaL be the poles converging from Tm,n at a,

ΜHaL � the number of elements in UHaL

Qn,m be the Padé  approximants denominators and Q
n,m
*  be the spherical normal�

izations of Qn,m,

DHaL � lim sup
n®¥

¡IQ
n,m
* M HaL¥1�n

,

Pm be the set where aΜHaL ³ 1, and

Em � 88a, ΜHaL< a Î Pm<

be a divisor. Then

"aÎPm
Rm �

 a¤

DHaL

dHmL � em.

ConvergenceRadiusOfPadeApproximantRowsWithMPoles

Let f  be a meromorphic function, and DHmL be the largest complex disk where f  

has less than or equal to m poles.  Let Tm,n be the m th row Padé  approximants.  

If the number of poles in DHmL  is exactly m, then Tm,n converges to f  in the 

chordal metric on the Riemann sphere.

ConvergenceSetBoundednessForComplexContinuedFractio

nProducts

For any set E of complex numbers, denote by VBHEL the set of all finite contin�

ued fractions K
i=1

n

1 �bi  with elements bm Î E.  Call a set S a convergence set of 

type B if bm Î E for all m ³ 1 ensures the convergence of K
i=1

n

1 �bi .  Then if 

z � -1 is not a limit point of WBHEL � 8u ×v : u Î VBHEL, v Î VBHEL<, E is a conver�

gence set of type B for K
i=1

n

1 �bi  if and only if VBHEL is bounded.

ConvergenceSetBoundednessForComplexContinuedFractio

nSums
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ConvergenceSetBoundednessForComplexContinuedFractio

nSums

For any set E of complex numbers, denote by VAHEL the set of all finite contin�

ued fractions K
i=1

n

ai �1 with elements am Î E.  Call a set S a convergence set of 

type A if am Î E for all m ³ 1 ensures the convergence of K
i=1

n

ai �1.  Then if 

z � -1 is not a limit point of WAHEL � 8u + v : u Î VAHEL, v Î VAHEL<, E is a conver�

gence set of type A for K
i=1

n

ai �1 if and only if VAHEL is bounded.

ConvergenceSetBoundednessForRealContinuedFractionPro

ducts

For any set E of real numbers, denote by VBHEL the set of all finite continued 

fractions K
i=1

n

1 �bi  with elements bm Î E.  Call a set S a convergence set of type B 

if bm Î E for all m ³ 1 ensures the convergence of K
i=1

n

1 �bi .  Then E is a conver�

gence set of type B for K
i=1

n

1 �bi  if and only if VBHEL is bounded.

ConvergenceSetBoundednessForRealContinuedFractionSu

ms

For any set E of real numbers, denote by VAHEL the set of all finite continued 

fractions K
i=1

n

ai �1 with elements am Î E.  Call a set S a convergence set of type A 

if am Î E for all m ³ 1 ensures the convergence of K
i=1

n

ai �1.  Then E is a conver�

gence set of type A for K
i=1

n

ai �1 if and only if VAHEL is bounded.

ConvergenceTheoremForPeriodicIntegralContinuedFractio

nsWithVariableUpperLimits
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Let

KHtL � D
k=1

¥

à
t0

Τk-1 aHΤk - 1, ΤkL

bHΤk - 1, ΤkL
â Τk

be a periodic integral continued fraction, Τk be the periodic integral continued 

fraction integration limit set of KHtL, aHΤ, ΞL and bHΤ, ΞL be continuous complex-

valued functions on the domain W � @t0, TD � @t0, ΤD, and ArHtL be the rth 

convergent.

Write Τk for HΤk - 1, ΤkL and set

Qk,nIΤ
kM �

bHΤnL for k � n

bIΤkM + Ù
t0

Τk-1
aIΤk+1M

Q Hk+1,nLIΤk+1M
â Τk+1 for 1 £ k ì k < n.

Then given gHΤ, ΞL is a continuous function such that ¡Qk,nIΤkM¥ ³ gHΤ, ΞL, KHtL 

converges absolutely and uniformly and

 KHtL - ArHtL¤ £
m

-2 r-1
M

r+1 Ht-t0Lr+1

Hr+1L!
,

where

M � maxHt0 £ Ξ £ Τ £ T,  aHΤ, ΞL¤L

m � minHt0 £ Ξ £ Τ £ T,  gHΤ, ΞL¤L.

ConvergenceTheoremForSequenceOfEvenApproximants

Let a be an arbitrary complex number and let Ρ >  a¤, Ρ ³  a + 1¤, and Ε > 0. Let 

the elements bn of the continued fraction Ξ � @1; b1, b2, … D satisfy

b2 n-1 � c2 n-1
2 for  c2 n-1 ± ä a¤ £ Ρ

b2 n-1 � c2 n-1
2 for  c2 n ± äHa + 1L¤ ³ Ρ

and  b2 n¤ ³ - a + 1¤2 + Ρ2 + Ε.  Then the even part of Ξ converges to a value Ν 

which satisfies  Ν - Ha + 1L¤ £ Ρ.

ConvergentsDenominatorGrowth
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Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

and An � Bn the sequence of its convergents.

Then for almost all Ξ and any ¶ > 0 the following identity holds as n ® ¥:

Bn

n � exp
Π2

12 lnH2L
+ o

1

n

ln
H3+¶L�2HnL .

ConvergentsDenominatorGrowthBound

Let Ξ be a regular continued fraction, Bn be the convergent denominator of Ξ, 

and Fn be the Fibonacci sequence. Then Bn ³ Fn.

ConvergentsIrreducibility

Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction with indeterminates ak, bk and pk �qk the sequence of its 

convergents.

Then for all n Î Z
+, the convergents numerators 

pkHa1, a2, … , an, b0, b1, b2, … , bnL and denominators 

qkHa1, a2, … , an, b0, b1, b2, … , bnL as polynomials in the indeterminates ak, bk 

are irreducible polynomials.

ConvergentsMatrixRepresentations

Let 0 < Ξ < 1 be a regular continued fraction

Ξ � 0 + K
k=1

¥ 1

bk

and An � Bn the sequence of its convergents.

Then the following representations for the convergents holds:

An

Bn

� ä
k=1

n
1 0

0 bk

.
0

1
.

ConvergentsNumeratorAndDenominatorRelativelyPrime
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ConvergentsNumeratorAndDenominatorRelativelyPrime

Let Ξ be a generalized continued fraction, An be the convergent numerator of Ξ, 

and Bn be the convergent denominator of Ξ.  Then

gcdHAn, BnL � 1.

ConvergentsNumeratorGrowth

Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

be a continued fraction and An � Bn the sequence of its convergents.

Then for almost all Ξ and any ¶ > 0 the following identity holds as n ® ¥:

An

n � Ξ
n

exp
Π2

12 lnH2L
+ o

1

n

ln
H3+¶L�2HnL .

ConvergentsOfCFractionsAreIrredicubleRationalFunctions

The nth convergent An HxL � Bn HxL of a corresponding type continued fraction Ξ 

of the form

Ξ � 1 +
b1 x

Α1

1 +
b2 x

Α2

1+
b3 x

Α
3

1+º

is an irreducible rational fraction.

ConvergentsOfInverseRegularContinuedFraction
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Let Ξ be a regular continued fraction

Ξ � b0 + K
k=1

N 1

bk

with bk Î Z
+ and Ak � Bk the sequence of its convergents.

Then for all M Î Z
+ the following identities hold:

AM

AM-1

� bM + K
k=1

M 1

bM-k

BM

BM-1

� bM + K
k=1

M-1 1

bM-k

.

CorollaryForMeromorphicExtensionOfJFractions1
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

For notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1. 

If, for arbitrary Ω Î C with w � Ω2, Cn HΩL, Dn HΩL are terms which satisfy the 

recursions C0 HΩL � D-1 HΩL � 0, C1 HΩL � D0 HΩL � 1 - w, and

Cn+1 HΩL - Cn HΩL � w HCn HΩL - Cn-1 HΩLL + un Ω Cn HΩL + vn w Cn-1HΩL, for n ³ 1,

Dn+1 HΩL - Dn HΩL � w HDn HΩL - Dn-1 HΩLL + un Ω Dn HΩL + vn w Dn-1HΩL, for n ³ 0,

and if expressions CHΩL, DHΩL are defined so that C HΩL � S0 HΩL, D � S-1 HΩL 
where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL

for

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition, then the following hold:

1. For every fixed 0 < t < 1, lim Cn HΩL � C HΩL and lim Dn HΩL � D HΩL uniformly 

for  Ω¤ £ t.

2. The functions CHΩL, DHΩL are holomorphic for  Ω¤ < 1, are continuous for 

 Ω¤ £ 1, Ω ¹ ± 1, and satisfy C T 0, D T 0 due to the fact, e.g., that 

C H0L � D H0L � 1.

CorollaryForMeromorphicExtensionOfJFractions2

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2 and for 

notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1.

1. Uniformly on compact subsets of  Ω¤ � 1, Ω ¹ 1,

Cn HΩL � C HΩL - w
n

CHΩL + O H1L,

Dn HΩL � D HΩL - w
n+1

DHΩL + O H1L

as n ® ¥, where Cn HΩL, Dn HΩL are terms which satisfy the recursions 

C0 HΩL � D-1 HΩL � 0, C1 HΩL � D0 HΩL � 1 - w,

Cn+1 HΩL - Cn HΩL � w HCn HΩL - Cn-1 HΩLL + un Ω Cn HΩL + vn w Cn-1 HΩL, n ³ 1,

Dn+1 HΩL - Dn HΩL � w HDn HΩL - Dn-1 HΩLL + un Ω Dn HΩL + vn w Dn-1 HΩL, n ³ 0,

and where C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition.

2. If in addition to the hypotheses in (1.) Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥, then C and 

D are continuous for  Ω¤ £ 1 and the asymptotic estimates for Cn, Dn in (1.) hold 

uniformly for all  Ω¤ � 1.

3. For all  Ω¤ � 1, Ω ¹ ± 1,

Ω
-1

C IΩ
-1M D HΩL - Ω C HΩL D IΩ

-1M � IΩ
-1

- ΩM ä
j�1

¥

I1 - v jM.

4. For fixed  Ω¤ � 1, Ω ¹ ± 1, limn®¥ Cn HΩL, respectively limn®¥ Dn HΩL, exists and 

equals C HΩL ¹ 0, respectively D HΩL ¹ 0, if and only if CHΩL � 0, respectively 

DHΩL � 0. Moreover, at least one of the sequences CnHΩL, DnHΩL diverges to ¥.

5. If all an, bn the continued fraction expansion of f HzL is real, then 

C HΩL � CHΩL ¹ 0 and D HΩL � DHΩL ¹ 0 both hold for all  Ω¤ � 1, Ω ¹ ± 1. In this 

case, both sequences CnHΩL, DnHΩL diverge in this region as n ® ¥.

6. If in addition to the hypotheses in (1.) Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥ holds, then

lim
n®¥

1

n

lim
Ω®±1

CnHΩL

H1 - ΩL
� CH±1L

lim
n®¥

1

n

lim
Ω®±1

DnHΩL

H1 - ΩL
� DH±1L.
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2 and for 

notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1.

1. Uniformly on compact subsets of  Ω¤ � 1, Ω ¹ 1,

Cn HΩL � C HΩL - w
n

CHΩL + O H1L,

Dn HΩL � D HΩL - w
n+1

DHΩL + O H1L

as n ® ¥, where Cn HΩL, Dn HΩL are terms which satisfy the recursions 

C0 HΩL � D-1 HΩL � 0, C1 HΩL � D0 HΩL � 1 - w,

Cn+1 HΩL - Cn HΩL � w HCn HΩL - Cn-1 HΩLL + un Ω Cn HΩL + vn w Cn-1 HΩL, n ³ 1,

Dn+1 HΩL - Dn HΩL � w HDn HΩL - Dn-1 HΩLL + un Ω Dn HΩL + vn w Dn-1 HΩL, n ³ 0,

and where C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition.

2. If in addition to the hypotheses in (1.) Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥, then C and 

D are continuous for  Ω¤ £ 1 and the asymptotic estimates for Cn, Dn in (1.) hold 

uniformly for all  Ω¤ � 1.

3. For all  Ω¤ � 1, Ω ¹ ± 1,

Ω
-1

C IΩ
-1M D HΩL - Ω C HΩL D IΩ

-1M � IΩ
-1

- ΩM ä
j�1

¥

I1 - v jM.

4. For fixed  Ω¤ � 1, Ω ¹ ± 1, limn®¥ Cn HΩL, respectively limn®¥ Dn HΩL, exists and 

equals C HΩL ¹ 0, respectively D HΩL ¹ 0, if and only if CHΩL � 0, respectively 

DHΩL � 0. Moreover, at least one of the sequences CnHΩL, DnHΩL diverges to ¥.

5. If all an, bn the continued fraction expansion of f HzL is real, then 

C HΩL � CHΩL ¹ 0 and D HΩL � DHΩL ¹ 0 both hold for all  Ω¤ � 1, Ω ¹ ± 1. In this 

case, both sequences CnHΩL, DnHΩL diverge in this region as n ® ¥.

6. If in addition to the hypotheses in (1.) Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥ holds, then

lim
n®¥

1

n

lim
Ω®±1

CnHΩL

H1 - ΩL
� CH±1L

lim
n®¥

1

n

lim
Ω®±1

DnHΩL

H1 - ΩL
� DH±1L.

CorollaryForMeromorphicExtensionOfJFractions3

Results.nb    119



Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

for some R > 1. Furthermore, let Ω Î C be an arbitrary complex number with 

w � Ω2 and for notational convenience, let u j � 2 b j for j ³ 0 and let 

v j � 1 - 4 a j for j ³ 1. Let C, D be functions defined such that C HΩL � S0 HΩL, 

D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Then both C and D are 

holomorphic for  Ω¤ < R
1�2, both are continuous for  Ω¤ £ R

1�2, and together they 

satisfy the identity

Ω
-1

C IΩ
-1M D HΩL - Ω C HΩL D IΩ

-1M � IΩ
-1

- ΩM ä
j�1

¥

I1 - v jM

for R-1�2 £  Ω `¤ £ R
1�2.

CorollaryForMeromorphicExtensionOfJFractions4
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0 hold. Furthermore, let Ω Î C be an arbitrary complex number with 

w � Ω2 and for notational convenience, let u j � 2 b j for j ³ 0 and let 

v j � 1 - 4 a j for j ³ 1. Moreover, suppose the functions CHΩL, DHΩL are defined to 

be C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Finally, define the 

functions A+, A
-, B

+, B
- as follows: A+HxL � 2 ã-ä J

CIã-ä JM, A- HxL � 2 ãä J
CIãä JM, 

B
+HxL � DIã-ä JM, and B-HxL � DIãä JM. Given this framework, -1 £ x £ 1 implies 

that

2 ΠΦ HxL � f
- HxL - f

+ HxL

and that

Π ä ΦHcosHJLL � ã
ä J

CIã
ä JM � DIã

ä JM - ã
-ä J

CIã
-ä JM � DIã

-ä JM,

where

ΦHxL �
2

Π
I1 - x

2M1�2
ä
j�1

¥

I1 - v jM � B
+HxL B

-HxL

for x Î @-1, 1D with all roots nonnegative, where x � cosHJL, J Î @0, ΠD implies

ΦHcosHJLL �
2

Π
sinHJL ä

j�1

¥

I1 - v jM � DIã
ä JM DIã

-ä JM,

and where f
±HxL satisfy f

± HxL � A
± HxL � B

± HxL for -1 £ x £ 1.

CReducedIrrationalNumber

In irrational number Α Î R �Q with conjugate Α¢ is C-reduced if Α > 0 and 

Α¢ < -1.

CRegularFractionsConvergeToIrrationals

Any C-regular continued fraction Ξ converges to some Α Î R �Q.

Criterion:ContinuedFractionTranscendence1
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Criterion:ContinuedFractionTranscendence1

Let Ξ be a positive irrational number 0 < Ξ < 1 with continued fraction expansion

Ξ � K
j=1

¥ 1

b j

with a j Î Z
+ and convergents An � Bn (with q-1 � 0).  If the sequence 8bn<

n=1
¥

1. is not eventually periodic

2. there exists a sequence of finite word 8Vn<
n=1
¥  such that V

n

w is a prefix of 

8bn<
n=1
¥

3. the sequence 8 Vn¤<
n=1
¥  is increasing

and either there exists a rational w ³ 2, or there exists a rational w > 1 and the 

sequence 9B
n

1�n=
n=1

¥
 is bounded, then Ξ is transcendental.

Here,  Vn¤ denotes the length of a word and V
n

w is the word formed by dwt 

copies of Vn concatenated with the first `Hw - dwtL  w¤p elements of Vn.

Criterion:ContinuedFractionTranscendence2

Let Ξ be a positive irrational number 0 < Ξ < 1 with continued fraction expansion

Ξ � K
j=1

¥ 1

b j

with a j Î Z
+ and convergents An � Bn (with q-1 � 0).  If the sequence 8Bn<

n=1
¥  is 

bounded define

m � lim
n®¥

inf B
n

1�n

M � lim
n®¥

sup B
n

1�n

and let two rational numbers w > 1 and v be chosen so that

w > H2 v + 1L
lnHML

lnHmL
- v.

If there exist two sequences 8Un<
n=1
¥  and 8Vn<

n=1
¥  such that

1. for any n ³ 1 the Un V
n

w is a prefix of 8bn<
n=1
¥

2. the sequence 8 Un¤ �  Vn¤<
n=1
¥  is bounded from above by v

3. the sequence 8 Vn¤<
n=1
¥  is increasing

then Ξ is transcendental.

Here,  Vn¤ denotes the length of a word and V
n

w is the word formed by dwt 

copies of Vn concatenated with the first `Hw - dwtL  w¤p elements of Vn.

CriterionForCConvergents
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CriterionForCConvergents

Let Α Î R �Q be an irrational. Any ratio A � B Î Q satisfying

Α -
A

B

<
1

c j q
2

, j Î 80, 1<

where c0 � 3 �2 and c1 � 2 is a C-convergent of Α.

CriterionForCDualConvergents

Let Α Î R �Q be an irrational. Any ratio A � B Î Q satisfying

Α -
A

B

<
1

c
j

*
q

2
, j Î 80, 1<

where c0
* � 2 and c1

* � 3 �2 is a C-dual convergent of Α.

CriterionForConvergenceOfGrommerFractions1

If it is possible to find a single bounded, nondecreasing function ΖHtL such that

à
-¥

¥

t
s

â Ζ HtL � cs

for s � 0, 1, … , where Ζ H-¥L � 0 by definition, then the associated continued 

fraction Ξ of the form

Ξ �
c0

z - Α0 -
Β0

z-Α1-
Β1

z-Α2-º-
Β
r-2

z-Α
r-1

-º

for a given formal power series f0 HzL � Ún�0
¥

cn z
-n-1 is a Grommer fraction 

which converges to the value

à
-¥

¥ â ΖHtL

z - t

,

ImHzL > 0, of by the Stieltjes transform.

CriterionForConvergenceOfGrommerFractions2
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Given a function f0 which behaves asymptotically as the formal power series 

P HzL � Ún�0
¥

cn z
-n-1 in the sector Ε £ argHzL £ Π - Ε, 0 < Ε < Π �2, where cn Î R for 

all n, where f0HzL is analytic for all ImHzL > 0, and where ImH f0HzLL < 0 when 

ImHzL > 0, then the Grommer fraction Ξ associated to f0, P, converges whenever

lim inf
n®¥

c2 n

H2 nL !

1�n

< ¥.

CriterionForExistenceOfGrommerFractionsForCertainPow

erSeries1

The associated continued fraction Ξ of the form

Ξ �
c0

z - Α0 -
Β0

z-Α1-
Β1

z-Α2-º-
Β
r-2

z-Α
r-1

-º

for a given formal power series f0 HzL � Ún�0
¥

cn z
-n-1 is a Grommer fraction if 

Hk > 0 for all k � 0, 1, 2, … , where Hk denotes the kth Hankel determinant of 

f0.

CriterionForExistenceOfGrommerFractionsForCertainPow

erSeries2

The associated continued fraction Ξ of the form

Ξ �
c0

z - Α0 -
Β0

z-Α1-
Β1

z-Α2-º-
Β
r-2

z-Α
r-1

-º

for a given formal power series f0 HzL � Ún�0
¥

cn z
-n-1 is a Grommer fraction if it 

is possible to find a bounded, nondecreasing function ΖHtL such that, for 

s � 0, 1, … ,

à
-¥

¥

t
s

â Ζ HtL � cs

where Ζ H-¥L � 0 by definition.

CriterionForPowerSeriesToHaveSFractionExpansions
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A power series of the form

c0

z

+
c1

z
2

+
c2

z
3

+ º

has an S-fraction expansion if and only if the determinants Dp and Wp are 

nonzero for all p � 0, 1, 2, …  where for each p,

Dp �

c0 c1 º cp

c1 c2 º cp+1

» » ¸ »

cp cp+1 º c2 p

and

Wp �

c1 c2 º cp+1

c2 c3 º cp+2

» » ¸ »

cp+1 cp+2 º c2 p+1

.

Criterion:SeidelSternCriterion

Let

Ξ � b0 + K
k=1

N 1

bk

be a positive continued fraction (meaning bn ³ 0 for all n).  Then the continued 

fraction Ξ converges if and only if

â
n=1

m

bn � ¥.

Criterion:TietzeCriterion

The continued fraction

Ξ � b0 + K
k=1

¥ ak

bk

with ak Î Z, a j ¹ 0 for all j and bk Î Z
+ converges if there exists a positive 

integer N such that for all k ³ N

bk ³  ak¤

bk ³  ak¤ + 1 for ak+1 < 0.

Furthermore, if the continued fraction converges, the limit Ξ is irrational.

DajaniKraaikampTwoDimensionalGaussKuzminTheorem
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DajaniKraaikampTwoDimensionalGaussKuzminTheorem

Let T be a Gauss map, U : R
2 ® R

2 be given by

UHx, yL � THxL,
1

e 1

x
u + y

,

Λ be the Lebesgue measure on R2, JHx, yL � H0, xL � H0, yL, mNHx, yL be given by

mNHx, yL � ΛIIUNM-1 HJHx, yLLM,

and

g � Φ
-1

.

Then

mNHx, yL �
lnH1 + x yL

lnH2L
+ OIgNM.

DarmonMckayContinuedFractionForOneOverEMinus1

Let Ξ be a regular continued fraction where

Ξ � K
k=1

¥ n

n

.

Then

Ξ �
1

ã - 1
.

DavisonFractions

Let Θ be a positive irrational number 0 < Ξ < 1 and let k Î Z
+ and k ³ 2. Then 

the continued fractions

Ξk � K
j=1

¥ 1

1 + HH j ΘL mod kL

are transcendental.

DavisonShallitSelfSimilarContinuedFractionsAreTranscende

ntal
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Let wn be a sequence of natural numbers defining

Ξ � K
n=1

¥ 1

bn

a regular continued fraction, with convergents An � Bn that satisfy

b0 � 0

b1 � w0

" n ³ 0, bn+2 � Bn wn+1.

Then Ξ is a transcendental number.

DawsonConvergenceCriterionI

Let Ξ be a regular continued fraction

Ξ � K
k=1

¥ 1

bk

with convergents gn and suppose that g2 n+1 converges absolutely and that g2 n 

converges, then gn converges if and only if

â
i=1

¥

 b2 i-1¤ � ¥ ë lim sup â
i=1

p

 b2 i¤ � ¥.

DawsonConvergenceCriterionII

Let Ξ be a regular continued fraction

Ξ � K
k=1

¥ ak

bk

with convergents fn � An � Bn.  If f2 n converges and $ k > 0, "i>k Bi ¹ 0 and 

lim infH an¤L < ¥, then there exists Ν and a subsequence qn such that

lim f2 qHnL+1 � v ì lim f2 n � v.

DawsonConvergenceCriterionIII
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Let Ξ be a generalized continued fraction

Ξ � K
k=1

¥ ak

1

and rn is a sequence of nonegative reals such that r1  a1 + 1¤ ³  a1¤, 
r2  a1 + a2 + 1¤ ³  a2¤, for all n ³ 3, rn  an-1 + an + 1¤ ³ rn-2 rn  an-1¤ +  an¤ and

liminf
n

ä
i=1

n

ri � 0,

and for all n ³ 1, rn < 1

â
i=1

¥

H1 - riL � ¥.

Then Ξ converges in the wider sense.

DawsonConvergenceCriterionIV

Let Ξ be a generalized continued fraction

Ξ � K
k=1

¥ ak

1
.

Then if for all n ³ 1,  an + an+1 + 1¤ ³ 2 maxH an¤,  an+1¤L, Ξ converges.

DegertConditionPeriods

Let d be a squarefree integer,

d � r + X
2

and

x � d

be quadratic irrational numbers, Ξ be the regular continued fraction of x, and l 

be the regular continued fraction period of Ξ. Given H4 XL mod r � 0 and 

2 - 2 X £ r £ 2 X, then l £ 12.

DensenessOfErrorSumFunctionsOfContinuedFractions

Let Αn be an irrational number where 0 £ Αn £ 1, Ξn be the regular continued 

fraction of Αn, EHΑnL be the absolute error sum of Ξn, E*HΑnL be the error sum of 

Ξn, S � @0, ΦD , and T � @0, 1D.  Then given that Αn is dense, it follows that EHΑnL 
and E*HΑnL are dense in @0, ΦD and @0, 1D, respectively.

DiscrepancyOfARealSequence
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DiscrepancyOfARealSequence

Let E Ì @0, 1, Ω � 8xn<
n�1
N  a sequence of real numbers and define AHE; N; ΩL so 

that

A HE; N; ΩL � ð 8n : 1 £ n £ N and fracHxnL Î E<,

where ð A denotes the number of elements of A for all sets A and fracHyL 

denotes the fractional part of the element y for all y.

The the discrepancy DN associated with the finite segments of Ω is defined to be

DN HΩL � sup
0£Α< Β£1

AH@Α, ΒL; N; ΩL

N

- H Β - ΑL .

DistributionalLimitForContinuedFractionsWithMinimalRema

inder
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Let x be a rational number where 0 £ x £ 1,

Ξ � K
n=1

N an

bn

be a half-regular continued fraction of x, define

SHxL � â
n=1

N

an,

let Mn be rational numbers 0 £ x £ 1 where SHxL £ n + 1,

FnHtL �
card 8Ξ : Ξ Î Mn ì Ξ £ t<

card 8Ξ : Ξ Î Mn<

FHtL � lim
n®¥

FnHtL

EHiL � ä
j=1

i

I-a jM

Ai � â
j=1

i

b j

Λ �
1

3
1 + 19 - 3 33

3

+ 19 + 3 33
3

and

c �
1

Λ - 1
.

Then

FHxL � b0 - c Λ â
i=1

¥
EHiL

ΛAi

.

DistributionalLimitForContinuedFractionsWithOddPartialQ

uotients
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Let x be a rational number where 0 £ x £ 1,

Ξ � K
n=1

N an

bn

be the continued fraction with odd partial quotients continued fraction of x,

SHxL � â
n=1

N

an,

Mn be rational numbers 0 £ x £ 1 where SHxL £ n + 1,

FnHtL �
card 8Ξ : Ξ Î Mn ì Ξ £ t<

card 8Ξ : Ξ Î Mn<

FHtL � lim
n®¥

FnHtL

EHiL � ä
j=1

i

I-a jM

Ai � â
j=1

i

b j - 1

Λ �
1

3
1 + 19 - 3 33

3

+ 19 + 3 33
3

.

Then

FHxL � 1 - â
i=1

¥
EHiL

ΛAi

.

DistributionForMaximumPartialQuotient

Let Α be an irrational number where 0 £ Α £ 1,

Ξ � K
n=1

¥ 1

bn

be its regular continued fraction,

LN � max
n£N

bn,

y be a positive real, SHN, yL be irrational numbers Α where 0 £ Α £ 1 and 

LN � N < y � lnH2L, and Μ be the Gauss measure.  Then

lim
N®¥

ΜHSHN, yLL � ã
-1�y

.

DistributionOfRationalsWRTLargestPartialDenominator
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Let 0 < p �q < 1 be a rational number and gcdHp, qL � 1. Let DHp �qL be the 

maximal partial denominator that occurs in the regular continued fraction 

expansion of p �q

D

p

q

� max

p

q
=K

k=1

N

1

bk

íbN>1

H8b1, b2, … , bN<L,

and let FHx, ΑL be the number of fractions with maximal denominator x such 

that their largest partial denominator is less than lnHΑL x

FHx, ΑL � card
p

q : 0 £ p < q £ x í gcdHp, qL � 1 í DJ
p

q
N < Α lnHxL

.

Then for Α > 4 � ln Hln HxLL

FHx, ΑL �
3

Π2
x

2
ã

-
12

Α Π2 1 + O

1

Α2
+ 1 ã

24

Α Π2

lnHlnHxLL

lnHxL

holds uniformly.

DistributionOfTheLargestPartialDenominator

Let 0 < p �q < 1 be a rational number and gcdHp, qL � 1.  Let DHp �qL be the 

maximal partial denominator that occurs in the regular continued fraction 

expansion of p �q

D

p

q

� max

p

q
=K

k=1

N

1

bk

íbN>1

8b1, b2, … , bN<.

and let FHx, Α, ML be the number of fractions with maximal denominator x such 

that exactly M of their partial denominator are greater than Α lnHxL

FHx, Α, ML � card p� q : 0 £ p < q £ x í

gcdHp, qL � 1 í card b

j:b j>Α lnHxLí
p

q
�K

k=1

N

1

bk

íbN>1

� M .

Then asymptotically for large x

FHx, Α, ML �
3

Π2
x

2
ã

-12�IΑ Π2M
1

M !

12

Α Π2

M

.

DomainOfConvergenceAssociatedToRogersRamanujanCon

tinuedFraction
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DomainOfConvergenceAssociatedToRogersRamanujanCon

tinuedFraction

Let Τ be an irrational number, define the modular nome by

q � ã
2 ä Π Τ

,

let ΞHqL be the Rogers Ramanujan continued fraction of q,

GqHzL � â
k=0

¥ q
k

2

z
k

Hq; qLm

be a holomorphic function, Rq be the holomorphic radius of GqHzL,

HqHzL �
GqHzL

GqHq zL

be a meromorphic function, Vq be the poles of HqHzL in D, a complex disk with 

radius Rq, Wq be circles containing the poles in Vq,

U � D - Wq

be a complex domain, and X be any closed set where X Ì Wq, X ¹ Wq.

Then ΞHqL converges uniformly to HqHzL on compact sets in U and for all X it is 

not true that ΞHqL converges uniformly on compact sets D - X.

DomainOfConvergenceForRogersRamanujanContinuedFrac

tion

Let Τ be an irrational number, define the modular nome by

q � ã
2 ä Π Τ

,

ΞHqL be the Rogers Ramanujan continued fraction of q,

GqHzL � â
k=0

¥ q
k

2

z
k

Hq; qLm

be a holomorphic function,

HqHzL �
GqHzL

GqHq zL

be a meromorphic function, Vq be the poles from HqHzL in D, the unit disk, Wq 

be complex circles containing the points in Vq,

U � D - Wq

be a complex domain, and X be any closed set where X Ì Wq, X ¹ Wq.

Then Ξ HqL converges uniformly to HqHzL on compact sets in U and 

H"X it is not true that ΞHqL converges uniformly on compact sets in D - XL .

DuallyRegularChain
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DuallyRegularChain

A dually regular chain is an infinite product T0 T1 º Tn º where T0 � V1
b0, 

b0 Î Z, T1 ¹ V1, and

Tn Î 9V j, C= for det HT0 T1 º Tn-1L � ±1

Tn Î 9V j, E j, C= for det HT0 T1 º Tn-1L � ± ä

for n ³ 1 such that no n0 Î Z
+, j Î 81, 2, 3< exist for which Tn � V j for all n ³ n0. 

The matrices used here are defined as follows:

V1 � 1 ä

0 1
, V2 � 1 0

-ä 1
, V3 � 1 - ä ä

-ä ä + 1

E1 � 1 0

1 - ä ä
, E2 � 1 ä - 1

0 ä
, E3 � ä 0

0 1

C � 1 ä - 1

1 - ä ä
.

EigenvaluesOfGaussKuzminWirsingOperator

Let L be the Gauss Kuzmin Wirsing operator and Λn be its eigenvalues. Then 

 Λ1+n¤ <  Λn¤, Λn has simple eigenvalues, H-1L1+n Λn > 0, and

lim
n®¥

Λn

Λ1+n

�
1

2
I-3 - 5 M.

EquivalenceTransformation
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Two continued fractions Ξ and Ξ¢ of the forms

Ξ � b0 + K
m=1

¥ am

bm

and

Ξ
¢ � b0

¢
+ K

m=1

¥ a
m

¢

b
m

¢

are said to be equivalent if there exists a sequence of complex numbers r � 8rm< 
with r0 � 1, rm ¹ 0 for m ³ 1, so that b0

¢ � b0, a
m

¢ � rm rm-1 am, and b
m

¢ � rm bm 

for m � 1, 2, 3, … . Here, the sequence r is said to be an equivalence transforma�

tion between Ξ and Ξ¢.

Perhaps the most commonly-used equivalence transformations results when rm 

has the form

rm � ä
k�1

m

a
k

H-1Lm+1-k �
Û

k�1

dm�2t
a2 k

Û
k�1

dHm+1L�2t
a2 k-1

,

which transforms Ξ into its regular continued fraction form Ξreg. Here, Ξreg is a 

regular continued fraction of the form

Ξreg � b0 + K
m=1

¥ 1

dm

,

where d1 � b1 �a1, and for m � 1, 2, 3, … ,

d2 m � b2 m

a1 a3 º a2 m-1

a2 a4 º a2 m

,

d2 m+1 � b2 m+1

a2 a4 º a2 m

a1 a3 º a2 m-1.

EquivalenceTransformationNumeratorDenominatorCancell

ation

Results.nb    135



Let

Ξ � b0 + K
k=1

N
Αk

Βk

Γk

∆k

be a continued fraction with convergents Ak � Bk. Then the continued fraction

Η � b0 + K
k=1

N

Α1 ∆1

Β1 Γ1

for k � 1

Αk ∆k Βk-1 Γk-1

Βk Γk

for k > 1

with convergents Pk �Qk is equivalent to the continued fraction Ξ, meaning

Η � Ξ

Pk � Ak

Qk � Bk.

EquivalenceTransformationWithUnitDenominator

Let

Ξ � b0 + K
k=1

N ak

bk

with bk ¹ 0 for k ³ 1 be a continued fraction with convergents Ak � Bk. Then the 

continued fraction

Η � b0 + K
k=1

N

a1

b1

for k � 1

ak

bk-1 bk

for k > 1

1

with convergents Pk �Qk is equivalent to the continued fraction Ξ, meaning

Η � Ξ

Pk � Ak

Qk � Bk.

EquivalenceTransformationWithUnitNumerator
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Let

Ξ � b0 + K
k=1

N ak

bk

with ak ¹ 0 for k ³ 1 be a continued fraction with convergents Ak � Bk. Then the 

continued fraction

Η � b0 + K
k=1

N 1

Û
j=1

k�2
a2 j-1

Û
j=1

k�2
a2 j

´bk for k even

Û
j=1

Hk-1L�2
a2 j

Û
j=1

Hk+1L�2
a2 j-1

´bk for k odd

with convergents Pk �Qk is equivalent to the continued fraction Ξ, meaning

Η � Ξ

Pk � Ak

Qk � Bk.

EquivalentSternStolzSeriesDivergenceCriteria

Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction. The Stern-Stolz series of Ξ diverges if one of the follow�

ing three criteria holds:

1. limm®¥ Ún=2
m ¢ bn-1 bn

an

¦ � ¥

2. limm®¥ Ún=2
m ¢ bn-1 bHnL

n an

¦ � ¥

3. limm®¥ inf
2<n<m

J an

bn-1 bn

N < ¥.

EstimatesForHausdorffDimensionForConstrainedPartialQuo

tients
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Let E be a subset of the natural numbers, EHRL be the regular continued frac�

tions Ξ whose partial denominators lie in E, EHGL be the backwards continued 

fractions Ξ whose partial denominators lie in E, and H be the Hausdorff dimen�

sion. Then given

â
eÎE

1

e

� ¥

it follows that HHEHRLL ³ 1 �2 and HHEHGLL ³ 1 �2.

EstimatingIntegralsUsingAlgebraicIrrationals

For an arbitrary function f  of bounded variation, denote by I the integral 

I � Ù0

1
f HxL â x. If Α is any algebraic irrational in H0, 1L whose continued fraction 

Ξ � @0; b1, b2, … D, then IN - I � O IN-H1-ΕLM where Ε > 0 and where

IN �
1

N
â
k�1

N

f Hk ΑL.

EstimatingIntegralsUsingQuadraticIrrationalContinuedFracti

ons

For an arbitrary function f  of bounded variation, denote by I the integral 

I � Ù0

1
f HxL â x. If Α is an irrational in H0, 1L whose continued fraction 

Ξ � @0; b1, b2, … D has bounded partial denominators, then IN - I � O Hln HNL � NL 
where

IN �
1

N
â
k�1

N

f HkΑL.

Moreover, if f  is a characteristic function of some subinterval J of H0, 1L, then

 IN - I¤ £ 36 ×sup

k

8bk< ×
lnHNL

N

.

EstimatingIntegralsUsingSlowlyConvergingContinuedFractio

ns
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For an arbitrary function f  of bounded variation, denote by I the integral 

I � Ù0

1
f HxL â x. If Α is an irrational in H0, 1L whose continued fraction 

Ξ � @0; b1, b2, … D has rational approximants of the form Ak � Bk where B0 � 1 

and where B j+1 � b j+1 B j + b j-1 for j � 1, 2, … , and if each partial denominator 

B j of Ξ satisfies the relation B j+1 � O IB j

Γ
M for fixed Γ > 1, then IN - I � O IN-1�ΓM 

where

IN �
1

N
â
k�1

N

f Hk ΑL.

EstimationOfApproximantsForLimitPeriodicContinuedFracti

ons

Let Ξ � KHbn �1L � @0; b1, b2, … D be a limit periodic continued fraction which 

satisfies for all n � 1, 2, …  dn £
1

4 I4 n
2-1M

, where dn � maxm³n  am - H-1 �4L¤. In 

particular, if Sn H0L � An � Bn is the nth approximant of Ξ and if the approximant 

function Sn HwL � An+An-1 w

Bn+Bn-1 w
 for all complex w, the following estimates are valid:

Ξ - SnI-
1

2
M

Ξ - Sn H0L
£

1- Β

1+ Β
J 1 +

Β

n
+

2 Β+1

2 n
2

N for dn £
1- Β2

4 I4 n
2-1M

, 0 £ Β £ 1 , n ³ 1

4 d Hn+1L Hn+2L

Hn+1Ld+1-2 d
for dn £

d

2 n
Α+1

, Α > 1 , d > 0

4 Hn+1L r
n+1 H2+rL

H1-rL I1-4 r
n+1M

for dn £ r
n, 0 < r < 1.

For the second case, the estimate holds for Hn - 1LΑ HΑ - 1L > 2 d n and for the 

third, the estimate holds whenever H1 - rL2 > 18 r
n+1.

EulerMindingFormulas
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and Ak � Bk the sequence of its convergents.

Then the following explicit forms for the numerators and denominators of the 

convergents hold:

An � ä
i=0

n

bi ´ 1 + â
Μ=0

n-1

â
iΜ=0

Μ-1

â
iΜ-1=0

iΜ-1

… â
i1=0

i2-1

â
i0=0

i1-1

ä
m=0

Μ
aim+m+1

bim+m bim+m+1

Bn � ä
i=1

n

bi ´ 1 + â
Μ=0

n-1

â
iΜ=1

Μ-1

â
iΜ-1=1

iΜ-1

… â
i1=1

i2-1

â
i0=1

i1-1

ä
m=0

Μ
aim+m+1

bim+m bim+m+1

.

EulerQuadraticIrrationalTheorem

Let

Ξ � b0 + K
k=1

¥ 1

bk

be a continued fraction with bn Î Z
+ and bn > 0 for n > 0 and bn+ j � bn for all 

n ³ n0 ³ 0 for some j ³ 0.  Then Ξ is a quadratic irrational, meaning Ξ is the 

solution of a quadratic equation with rational coefficients.

EulersFirstContinuantIdentity

Let Ξ be a regular continued fraction and KHi, jL its classical continuant. Then 

for all i < m < n < j,

KHi, jL KHm, nL - KHi, nL KHm, jL � H-1L j-m
KHi, m - 2L KH j + 2, nL.

EulerWallisRecursion
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and Ak � Bk the sequence of its convergents. Then the 

following recursion relations hold:

Ak � ak Ak-2 + bk Ak-1

Bk � ak Bk-2 + bk Bk-1

with the initial condition A-1 � 1, A0 � b0, B-1 � 0, B0 � 1.

EvenContraction

Let Ξ � b0 + KHam �bmL be a generalized continued fraction with nth approxi�

mant Ξn � An � Bn. A continued fraction Ζ � d0 + KHcm �dmL with nth approximant 

Ζn � Cn � Dn is said to be an even contraction of Ξ if and only if Ζn � Ξ2 n for 

n � 0, 1, 2, … . Note that Ξ has an even contraction if and only if b2 n ¹ 0 for all 

positive integers n.

EveryNumberInUnitIntervalIsSumOfKRealNumbersWhoseC

ontinuedFractionsHavePartialQuotientsLessThanOrEqualTo

K

Define Fk � 8Α Î H0, 1 �kL such that its partial quotients are less than or equal to k< 

then

k Fk � @0, 1D.

EveryQuadraticIrrationalHasPeriodicCDuallyRegularFractio

nExpansion

Every irrational number Α Î R �Q which is quadratic over Q has a periodic C-

dually regular continued fraction expansion.

EveryQuadraticIrrationalHasPeriodicCRegularFractionExpan

sion

Results.nb    141



Every irrational number Α Î R �Q which is quadratic over Q has a periodic C-

regular continued fraction expansion.

EveryRealNumberIsProductOfTwoF4RegularContinuedFrac

tions

Every real number x ³ 1 can be represented as a product of two regular contin�

ued fractions x � Ξ1 Ξ2

Ξ j � 0 + K
k=1

¥ 1

bk

with 0 £ bk £ 4 for all k and i � 1, 2.

EveryRealNumberIsSumOfTwoF4RegularContinuedFraction

s

Let T be the interval A 2 - 1, 4 2 - 4E. Then every real number x Î T can be 

represented as a sum of two regular continued fractions x � Ξ1 + Ξ2

Ξ j � 0 + K
k=1

¥ 1

bk

with 0 £ bk £ 4 for all k and i � 1, 2.

ExactGaussKuzminLevyTheorem

Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

Let Μ be the Lebesgue measure.  Then

ΜIx : Τ
kHxL < zM �

lnH1 + zL

lnH2L
+ â

m=2

¥

Λ
n

k
FnHzL.

Here Λn are the eigenvalues of the Gauss-Kuzmin-Wirsing operator L and F
n

¢ HzL 

the eigenfunctions of L. The eigenfunctions fulfill

FnH0L � FnH1L � 0

sup
ReHzL³-1�2

 Hz + 1L F
n

¢ HzL¤ < ¥.

ExistenceForArbitraryRadiusOfConvergenceForGSeriesAss

ociatedToRogersRamanujanContinuedFraction
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ExistenceForArbitraryRadiusOfConvergenceForGSeriesAss

ociatedToRogersRamanujanContinuedFraction

Let x be a real number where 0 £ x £ 1, Τ be an irrational number, define the 

modular nome by

q � ã
2 ä Π Τ

,

let ΞHqL be the Rogers Ramanujan continued fraction of q,

GqHzL � â
k=0

¥ q
k

2

z
k

Hq; qLm

be a holomorphic function, and Rq be the holomorphic radius set of GqHzL.  Then

"x $Τ Rq � x.

ExistenceOfConstantCoefficientVectorFieldsThatAreNotGl

oballyAnalyticHypoelliptic

Let Α be an irrational whose continued fraction an has convergent denomina�

tors Bn satisfying

an+1 > ã
K Bn � Bn

where K > 0.  Then

V � d �dx - Α d �dy

is neither globally analytic hypoelliptic nor globally hypoelliptic.

ExistenceOfRichardsGoldbergFractionsForPositiveRealFunct

ions
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If fr is a positive real function for which neither ar fr HzL - z fr HarL nor 

ar fr HarL - z fr HzL vanish for arbitrary positive constants ar Î R, then the func�

tion fr+1 defined by the recursive relation

fr+1 HzL �
ar fr HzL - z fr HarL

ar fr HarL - z fr HzL

is positive real and has an associated continued fraction Ξr+1 of the form

Ξr+1 �
d0

z

+
e1 - z

2

d1 z -
e2-z

2

d2 z-º

for some complex constants d1, d2, … , e1, e2, … . The continued fraction Ξr+1 is 

called the Richards-Goldberg continued fraction associated with fr+1.

ExistenceTheoremForEntireFunctionWhoseDiagonalPadeA

pproximantsConvergeNowhere

Let f  be an entire function and fnHzL be the Padé  approximants diagonals at 0.  

Then

$ f "z¹0 lim sup
n®¥

  fnHzL¤ � ¥.

ExistenceTheoremForSingularitiesOutsideConvergenceDisk

ForPadeApproximantRows
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Let f  be a meromorphic function, DHmL be the largest complex disk where f  has 

less than or equal to m poles.

Let Tm,n be the m th row Padé  approximants, Rm be the radius of DHmL, a be an 

element of C �0, Μ be a positive integer where 2 £ Μ £ m, UHaL be the poles 

converging from Tm,n at a, a j be elements of C �0 where 0 <  a1¤ and ¡a j¥ £ ¡a j+1¥,

"Μ£ j£m ¡a j¥ � R,

and Qn,m be the Padé  approximant denominators.  Then given

$N>0 "n>N Qn,m � ä
j=1

m

Hz - ΖH j, nLL

"1£ j£m lim
n®¥

ΖH j, nL � a j,

it follows that

"-1+Μ£ j£m Rm � R

Vm � 8aH1L, … , aH-1 + ΜL< are the poles of f in DHmL

"Μ£ j£m a j are singular points for f .

ExpressionForInvariantProbabilityOfBernoulliRandomContin

uedFractionWithParameterAlpha

Let Zn be an independent identically distributed Bernoulli random variable, P 

its probability expectation, Xn a Markov chain defined by

Xn � 1 � Xn-1 + Zn

PHZn � 0L � Α

PHZn � 1L � 1 - Α.

Then Xn converges to a singular probability Π supported on the positive reals 

which has the distribution function FHxL, that can be described by writing x as a 

continued fraction

Ξ � K
k=1

¥ 1

bk

and then

FHxL �
Ú
i=0

¥

I-
1

Α
M
i

I Α

Α+1
M

Ú
j=1

i+1

a j

for x £ 1

1 -
F J

1

x
N

Α
for x > 1.

FareyInterval
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FareyInterval

Given a Farey pair a �b < c �d, the interval @a �b, c �dD is called a Farey interval.

FareyPair

A pair of nonnegative rational numbers a �b < c �d is called a Farey pair if 

b c - a d � 1, i.e., if c �d - a �b � 1 � Hb dL.

FarinhaConvergenceCriterion

Let Ξ be a generalized continued fraction

Ξ � K
k=1

¥ ak

1

where the ak are functions in a region D satisfying

lim
n®¥

anHzL � 0 í anHzL ¹ 0

and  a1¤ £ Α ì  a1 + 1¤ ³  a1¤ + Μ for some Α and Μ for all n ³ 1, 

 an + an+1 + 1¤ ³ 2 maxH an¤,  an+1¤L.  Then Ξ converges and 

 ΞHzL¤ < min H3 �2, HΑ + ΜL � Μ^2L.

FastContinuedFractionAlgorithmGivesUltraCloseApproxim

ationsToIrrationals

For any irrational number Α in H0, 1L, the fast continued fraction algorithm 

gives precisely the set of all ultra-close approximations to Α.

FastKhinchinSpectrumOfContinuedFractions
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Let Α be an irrational number where 0 £ Α £ 1,

Ξ � K
n=1

¥ 1

bn

be its regular continued fraction, Ψn be a sequence where

lim
n®¥

Ψn

n

� ¥,

EHΨL be irrational numbers Α where

0 £ Α £ 1 í lim
n®¥

Ú
j=1

n

lnIb jM

Ψn

� 1,

c � lim sup
n®¥

ΨHn + 1L

ΨHnL
,

and H be the Hausdorff dimension. Then given Ψn is monotonic increasing it 

follows that

HHEHΨLL �
1

1 + c

.

FickenContinuedFractionCypher

Using the correspondence A ® 2, B ® 3, … , any text message can be encoded 

in the convergents of a regular continued fraction

Ξ � b0 + K
k=1

¥ 1

bk

.

with the association bk ® letter.

FiniteAutomatonBoundForGeneratingContinuedFractionsOf

Algebraics

Let Α be an algebraic number where 0 < Α < 1, d be the algebraic degree set of Α,

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of Α, and bn be the partial denominator of Ξ.  

Then given d ³ 3, it is not the case that bn is an automatic sequence.

FoldingLemma
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Let Ξ be the regular continued fraction expansion

Ξ � a0 + K
j=1

M 1

b j

and convergents An � Bn. Then the folowing identity holds for all n Î Z
+, n £ M, 

x Î C \0:

An

Bn

+
H-1Ln

x B
n

2
� b0 + K

j=1

n 1

b j for 1 £ j £ n

x -
Bn-1

Bn

for j � n + 1

�

b0 + K
j=1

2 n+1 1

b j for 1 £ j £ n

x for j � n + 1

-b2 n+2- j for 1 £ j £ 2 n + 1.

FractionalPartsOfIrrationalsUniformlyDistributedModOne

For Θ Î R �Q, fracHn ΘL is uniformly distributed modulo one for n � 1, 2, … , 

where fracHyL denotes the fractional part of y.

FunctionOfGaussMapAverageForAlmostAllNumbers

Let Ξ be an irrational number from the interval H0, 1L and let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

Then for any measuerable function f , and for almost all Ξ, the following iden�

tity holds:

lim
n®¥

1

n
â
k=1

n

f IΤ
kHΞLM �

1

lnH2L
à

0

1 f HxL

x + 1
â x.

FundamentalFormulas
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and Ak � Bk the sequence of its convergents. Further, let 

AΛ,Ν be the numerator of the convergents of the continued fraction

bΛ + K
k=Λ+1

Λ+Ν ak

bk

with initial conditions A0,Ν � AΝ, AΛ,-1 � 1, AΛ,0 � bΛ and let BΛ,Ν be the numera�

tor of the convergents of the continued fraction

bΛ+1 + K
k=Λ+2

Λ+Ν ak

bk

with initial conditions B0,Ν � BΝ, BΛ,-1 � 0, BΛ,1 � bΛ+1.

Then the following recursion relations hold:

qΛ+Ν-1 � aΛ BΛ-2 BΛ,Ν-1 + BΛ-1 AΛ,Ν-1

AΛ+Ν-1 � aΛ AΛ-2 BΛ,Ν-1 + AΛ-1 AΛ,Ν-1.

GaloisPeriodicRegularContinuedFraction

Let Ξ > 1 be a quadratic irrational, meaning a nonrational solution of a 

quadratic equation with rational coefficients of the form

Ξ �
P + D

Q

with P, Q, D Î Z with P ³ 0, D > 0, and Q > 0, and Q ý ID - P
2M. If its conjugate

Η �
P - D

Q

satisfies -1 < Η < 0, then Ξ has a purely periodic regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

with bn+ j � bn for all n ³ 0.

GaussKuzminTheoremForOptimalContinuedFractions
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Let K be a simply connected set, B be its boundary, Βi and Γi be real numbers 

where -g
2 £ Βi < Γi, Κi and Τi be real numbers where 0 £ Κi < Τi £ 1 �2, fi be a 

continuous function that is monotonic on @ Βi, ΓiD.

Also let li be a parametrized curve

li � 88Η, fiHΗL< Βi £ Η £ Γi< ê li � 88 Βi, Η< Κi £ Η £ Τi<,

where

B � æli.

Finally, let DnHKL be real numbers where -
1

2
£ x í x <

1

2
í $y T

ocf

nHy,0L
Î K, Λ be 

the Lebesgue measure, Μ be the optimal continued fraction measure,

focfHt, vL �
f 1

 t¤
v + v sgnHtL

2 Jf 1

 t¤
v + v sgnHtLN + 1

+
1

 t¤

be a function,

TocfHt, vL �  t¤ - focfHt, vL,
1

focfHt, vL + v sgnHtL
,

and

g � Φ
-1

.

Then

ΛHDnHKLL � ΜHKL + OHgnL.

GaussKuzminWirsingConstant

Let GHxL denote the Gauss map which is defined piecewise to be

GHxL �
x for x � 0

x - dxt for x ¹ 0.

From this, one can define the Gauss-Kuzmin operator (sometimes called the 

Gauss-Kuzmin-Wirsing operator) h to be the transfer operator of the Gauss map 

G having the form

h HxL �
1

x

-
1

x

or, alternatively, the form in which it acts on functions f , namely

@G f D HxL � â
n�1

¥ 1

Hx + nL2
f

1

x + n

.

Though analytic forms of its eigenfunctions are unknown past the zeroth such 

function, numerical methods can be used to compute the eigenvalues of the 

Gauss-Kuzmin operator. The first eigenvalue Λ1 is, to fifty decimal places, equal 

to

Λ1 � -.30366300289873265859744812190155623311087735225365 … ,

and the constant Λ defined to be the absolute value Λ �  Λ1¤ of this first eigen�

value is, by definition, the Gauss-Kuzmin-Wirsing constant and is intimately 

connected to the study of continued fractions.

The discovery of this constant was a result of an early problem of Gauss who, at 

the time, was interested in the probability distribution of coefficients in the 

continued fraction expansion of a random variable uniformly distributed in 

H0, 1L. To that end, given an arbitrary number x uniformly distributed in H0, 1L 
with regular continued fraction expansion Ξ HxL � @0; b1, b2, … , bn, … D, Gauss 

was able to find for all b Î Z
+ a closed-form asymptotic equivalence for the 

value Pr 8bn � b< as n ® ¥, namely

lim
n®¥

Pr 8bn � b< � -log
2

1 -
1

Hb + 1L2
.

Moreover, it was proved that if rn � rn HxL � @bn; bn+1, bn+2, … D and if 

zn HxL � rn - bn � @0; bn+1, bn+2, … D, then the (Lebesgue) measure mnHΑL of the 

collection of all numbers x Î H0, 1L for which zn HxL < Α satisfies the asymptotic 

result

lim
n®¥

mn HΑL �
lnH1 + ΑL

lnH2L
,

Α Î @0, 1D. The goal then shifted to finding an expression for the value of the 

expression mn HxL - lnH1 + xL � lnH2L for large values n, and no solution belonging 

to Gauss was ever published.

Later, Kuzmin published the first solution to this problem. He proved that by 

setting

mn HxL �
lnH1 + xL

lnH2L
+ rn HxL,

the value of rnHxL satisfied the asymptotic result rn HxL � O Jq n N for a constant 

q Î H0, 1L independent of n, x. Later, Lé vy was able to bound rnHxL asymptoti�

cally by 0.7n and even later, Szüsz was able to improve the bound to 0.485n. In 

the mid 1970s, Wirsing gave the exact asymptotic bounds for mn to be

mn HxL �
lnH1 + xL

lnH2L
+ H-ΛLn

Y HxL + O Hx H1 - xL Μ
nL

for a specifically defined function Y and a unique constant Μ while simultane�

ously computing the value Λ accurately to ten decimal places.

Much work has been done to advance the computational accuracy and theoreti�

cal understanding of the constant Λ since Wirsing’s work was published. For 

example, mathematicians Babenko and Flajolet & Vallé e independently discov�

ered a discretization over @0, 1D of the action of the Gauss map on certain 

Taylor expansions centered at x � 1 �2, the result of which is a discrete matrix 

M with entries of the form

Mi, j �
H-1Li

i! H-2L j
â
n�0

j
j

n
H-2Ln Hn + 2Li AΖHn + i + 2L I2n+1+2

- 1M - 2
n+i+2E,

where HxLi � GHx + iL � G HxL is a so-called Pochhammer symbol and where ΖHzL 
denotes Riemann’s zeta function, whose second-largest (in absolute value) 

eigenvalue Λ1 is precisely the value Λ above. These and other methods can be 

found in the work of Briggs, as well as in the literature published by Finch, 

MacLeod, and Plouffe. It is unknown whether Λ is irrational or transcendental.
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Let GHxL denote the Gauss map which is defined piecewise to be

GHxL �
x for x � 0

x - dxt for x ¹ 0.

From this, one can define the Gauss-Kuzmin operator (sometimes called the 

Gauss-Kuzmin-Wirsing operator) h to be the transfer operator of the Gauss map 

G having the form

h HxL �
1

x

-
1

x

or, alternatively, the form in which it acts on functions f , namely

@G f D HxL � â
n�1

¥ 1

Hx + nL2
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x + n
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Though analytic forms of its eigenfunctions are unknown past the zeroth such 

function, numerical methods can be used to compute the eigenvalues of the 

Gauss-Kuzmin operator. The first eigenvalue Λ1 is, to fifty decimal places, equal 

to

Λ1 � -.30366300289873265859744812190155623311087735225365 … ,

and the constant Λ defined to be the absolute value Λ �  Λ1¤ of this first eigen�

value is, by definition, the Gauss-Kuzmin-Wirsing constant and is intimately 

connected to the study of continued fractions.

The discovery of this constant was a result of an early problem of Gauss who, at 

the time, was interested in the probability distribution of coefficients in the 

continued fraction expansion of a random variable uniformly distributed in 

H0, 1L. To that end, given an arbitrary number x uniformly distributed in H0, 1L 
with regular continued fraction expansion Ξ HxL � @0; b1, b2, … , bn, … D, Gauss 

was able to find for all b Î Z
+ a closed-form asymptotic equivalence for the 

value Pr 8bn � b< as n ® ¥, namely

lim
n®¥

Pr 8bn � b< � -log
2

1 -
1

Hb + 1L2
.

Moreover, it was proved that if rn � rn HxL � @bn; bn+1, bn+2, … D and if 

zn HxL � rn - bn � @0; bn+1, bn+2, … D, then the (Lebesgue) measure mnHΑL of the 

collection of all numbers x Î H0, 1L for which zn HxL < Α satisfies the asymptotic 

result

lim
n®¥

mn HΑL �
lnH1 + ΑL

lnH2L
,

Α Î @0, 1D. The goal then shifted to finding an expression for the value of the 

expression mn HxL - lnH1 + xL � lnH2L for large values n, and no solution belonging 

to Gauss was ever published.

Later, Kuzmin published the first solution to this problem. He proved that by 

setting

mn HxL �
lnH1 + xL

lnH2L
+ rn HxL,

the value of rnHxL satisfied the asymptotic result rn HxL � O Jq n N for a constant 

q Î H0, 1L independent of n, x. Later, Lé vy was able to bound rnHxL asymptoti�

cally by 0.7n and even later, Szüsz was able to improve the bound to 0.485n. In 

the mid 1970s, Wirsing gave the exact asymptotic bounds for mn to be

mn HxL �
lnH1 + xL

lnH2L
+ H-ΛLn

Y HxL + O Hx H1 - xL Μ
nL

for a specifically defined function Y and a unique constant Μ while simultane�

ously computing the value Λ accurately to ten decimal places.

Much work has been done to advance the computational accuracy and theoreti�

cal understanding of the constant Λ since Wirsing’s work was published. For 

example, mathematicians Babenko and Flajolet & Vallé e independently discov�

ered a discretization over @0, 1D of the action of the Gauss map on certain 

Taylor expansions centered at x � 1 �2, the result of which is a discrete matrix 

M with entries of the form

Mi, j �
H-1Li

i! H-2L j
â
n�0

j
j

n
H-2Ln Hn + 2Li AΖHn + i + 2L I2n+1+2

- 1M - 2
n+i+2E,

where HxLi � GHx + iL � G HxL is a so-called Pochhammer symbol and where ΖHzL 
denotes Riemann’s zeta function, whose second-largest (in absolute value) 

eigenvalue Λ1 is precisely the value Λ above. These and other methods can be 

found in the work of Briggs, as well as in the literature published by Finch, 

MacLeod, and Plouffe. It is unknown whether Λ is irrational or transcendental.
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Let GHxL denote the Gauss map which is defined piecewise to be

GHxL �
x for x � 0

x - dxt for x ¹ 0.

From this, one can define the Gauss-Kuzmin operator (sometimes called the 

Gauss-Kuzmin-Wirsing operator) h to be the transfer operator of the Gauss map 

G having the form

h HxL �
1

x

-
1

x

or, alternatively, the form in which it acts on functions f , namely

@G f D HxL � â
n�1

¥ 1

Hx + nL2
f

1

x + n
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Though analytic forms of its eigenfunctions are unknown past the zeroth such 

function, numerical methods can be used to compute the eigenvalues of the 

Gauss-Kuzmin operator. The first eigenvalue Λ1 is, to fifty decimal places, equal 

to

Λ1 � -.30366300289873265859744812190155623311087735225365 … ,

and the constant Λ defined to be the absolute value Λ �  Λ1¤ of this first eigen�

value is, by definition, the Gauss-Kuzmin-Wirsing constant and is intimately 

connected to the study of continued fractions.

The discovery of this constant was a result of an early problem of Gauss who, at 

the time, was interested in the probability distribution of coefficients in the 

continued fraction expansion of a random variable uniformly distributed in 

H0, 1L. To that end, given an arbitrary number x uniformly distributed in H0, 1L 
with regular continued fraction expansion Ξ HxL � @0; b1, b2, … , bn, … D, Gauss 

was able to find for all b Î Z
+ a closed-form asymptotic equivalence for the 

value Pr 8bn � b< as n ® ¥, namely

lim
n®¥

Pr 8bn � b< � -log
2

1 -
1

Hb + 1L2
.

Moreover, it was proved that if rn � rn HxL � @bn; bn+1, bn+2, … D and if 

zn HxL � rn - bn � @0; bn+1, bn+2, … D, then the (Lebesgue) measure mnHΑL of the 

collection of all numbers x Î H0, 1L for which zn HxL < Α satisfies the asymptotic 

result

lim
n®¥

mn HΑL �
lnH1 + ΑL

lnH2L
,

Α Î @0, 1D. The goal then shifted to finding an expression for the value of the 

expression mn HxL - lnH1 + xL � lnH2L for large values n, and no solution belonging 

to Gauss was ever published.

Later, Kuzmin published the first solution to this problem. He proved that by 

setting

mn HxL �
lnH1 + xL

lnH2L
+ rn HxL,

the value of rnHxL satisfied the asymptotic result rn HxL � O Jq n N for a constant 

q Î H0, 1L independent of n, x. Later, Lé vy was able to bound rnHxL asymptoti�

cally by 0.7n and even later, Szüsz was able to improve the bound to 0.485n. In 

the mid 1970s, Wirsing gave the exact asymptotic bounds for mn to be

mn HxL �
lnH1 + xL

lnH2L
+ H-ΛLn

Y HxL + O Hx H1 - xL Μ
nL

for a specifically defined function Y and a unique constant Μ while simultane�

ously computing the value Λ accurately to ten decimal places.

Much work has been done to advance the computational accuracy and theoreti�

cal understanding of the constant Λ since Wirsing’s work was published. For 

example, mathematicians Babenko and Flajolet & Vallé e independently discov�

ered a discretization over @0, 1D of the action of the Gauss map on certain 

Taylor expansions centered at x � 1 �2, the result of which is a discrete matrix 

M with entries of the form

Mi, j �
H-1Li

i! H-2L j
â
n�0

j
j

n
H-2Ln Hn + 2Li AΖHn + i + 2L I2n+1+2

- 1M - 2
n+i+2E,

where HxLi � GHx + iL � G HxL is a so-called Pochhammer symbol and where ΖHzL 
denotes Riemann’s zeta function, whose second-largest (in absolute value) 

eigenvalue Λ1 is precisely the value Λ above. These and other methods can be 

found in the work of Briggs, as well as in the literature published by Finch, 

MacLeod, and Plouffe. It is unknown whether Λ is irrational or transcendental.

GaussKuzminWirsingOperator

Let V be the Banach space of functions analytic in the disk 8z :  z - 1¤ < 3 �2< and 

continuous in its closure, equipped with the supremum norm. The Gauss-

Kuzmin-Wirsing operator L is defined for f Î V through

L@ f HtLD HzL � â
m=1

¥ 1

Hz + mL2
f

1

z + m

.

L is a nuclear trace class operator of order 0.  The eigenvalues Λn, n Î Z
+ of L 

are simple and real with alternating sign and with Λ1 � 1,  Λn+1¤ £  Λn¤, and 

Ún=1
¥  Λn¤¶ for every ¶ > 0.  Asymptotically

lim
n®¥

Λn

Λn+1

� -Φ
2
.

L has the following properties:

TrHLL � à
0

¥ J1H2 xL

ãx + 1
â x

TrIL2M � à
0

¥

à
0

¥ J1J2 x y N
2

Hãx + 1L Hãy + 1L
â x â y.

GaussMap

The Gauss map Τ is defined as

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

GaussMapFixedPoints
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Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

The fixed points of the Gauss map are the numbers

Ξn � K
k=1

¥ 1

n

�
n

2 + 4 - n

2
,

where n Î Z
+.

GaussMapIntegral

Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

The following integral holds:

à
0

1

ΤHxL â x � ý - 1.

GaussMapInverse

Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

Let 0 < Ξ < 1 and let

Ξ � K
k=1

¥ 1

bk

be a regular continued fraction representation of Ξ.  Then the inverse Τ-1 of the 

Gauss map is given by

Τ
-1HΞL � K

k=1

¥ 1

m ∆k,0 + I1 - ∆k,0M bk+1

: m Î Z
+ �

1

Ξ + m

: m Î Z
+

.

GaussMapIsErgodic

The Gauss map is ergodic for the Gauss measure.

GaussMapRepresentation
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GaussMapRepresentation

Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

Let 0 < Ξ < 1 and let

Ξ � 0 + K
k=1

¥ 1

bk

be a continued fraction and An � Bn the sequence of its convergents.  Then

Ξ �
An + ΤnHΞL An-1

Bn + ΤnHΞL Bn-1

.

GaussMeasure

Given the measurable space HR, LL where L denotes the Σ-algebra of Lebesgue-

measurable subsets of R, the Gauss measure is defined to assign to each set 

A Î L the value ΜHAL, where

ΜHAL �
1

lnH2L
à

A

â Λ

1 + x

for Λ the usual Lebesgue measure on R.

GeneralContinuedFractionContraction
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and pk �qk the sequence of its convergents.  The contin�

ued fraction (called contraction)

Η � Β0 + K
k=1

M Αk

Βk

with convergents Pk �Qk, where

Pk

Qk

�
pnk

qnk

for n0 < n1 < n2 < …  has the numerators and denominators Αk, Βk where

Β0 �
pn0

qn0

Α1 � H-1Ln0 ä
j=1

n0+1

a j

qn1-n0-1,n0+1

qn0

Β1 � qn1

Αk � H-1Lnk-1-nk-2-1 ä
j=nk-2+2

nk-1+1

a j qnk-2-nk-3-1,nk-3+1 qnk-nk-1-1,nk-1+1

Βk � qnk-nk-2-1,nk-2+1

and n-1 � -1. Here pn,m �qn,m are the convergents of the continued fraction

bm + K
j=1

n am+ j

bm+ j

.

GeneralizedContinuedFraction
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There are no fewer than two distinct continued fraction concepts described as 

generalized continued fraction.

Perhaps most commonly, a numerical continued fractions Ξ is described as 

“generalized” provided Ξ is of the form

Ξ � b0 +
a1

b1 +
a2

b2+
a3

b3+º

where the partial numerators a1, a2, …  are allowed to be arbitrary. This is in 

contrast to the case where ak � 1 for k � 1, 2, … , whereby the resulting contin�

ued fraction is considered regular.

At least one other source defines a generalized continued fraction to be any 

continued fraction with elements consisting of arbitrary mathematical objects 

such as vectors in Cn, C-valued square matrices, Hilbert space operators, multi�

variate expressions, other continued fractions, etc. As it is written, a numerical 

continued fraction can be used to construct one of these generalized fractions 

in the following way: Given a continued fraction of the form

Ξ � b0 + KHan �bnL

with associated second-order recursion An � bn An-1 + an An-2, 

Bn � bn Bn-1 + an Bn-2, n � 1, 2, 3, … , subject to the initial conditions B-1 � 0, 

A0 � b0, A-1 � B0 � 1, define an nth order recursion among the elements of Ξ. 

The result of this will be a continued fraction Ξ
`
 which is said to be generalized 

due to the fact that each of the approximants An

`
� Bn

`
 of Ξ

`
 are n-dimensional 

vectors rather than numerical constants.

GeneralizedGaloisPeriodicRegularContinuedFraction

156     Results.nb



Let Ξ > 1 be an irrational solution of a quadratic equation with rational coeffi�

cients of the form

Ξ �
P + D

Q

with p, Q, D Î Z with P ³ 0, D > 0, and Q > 0, and Q ý ID - P
2M.  If its conjugate

Η �
P - D

Q

then Ξ has periodic regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

with bn+ j � bn for n ³ n0 with

n0 � 0 if - 1 < Η < 0

n0 � 1 if 0 < Η < 1

n0 ³ 1 if Η > 1.

GeneralizedGaussKuzminTheorem

Let

g � Φ
-1

and

G � Φ,

Tg be a generalized Gauss map, U : R
2 ® R

2 be given by

UHx, yL � TgHxL,
1

eg
2 +

1

x
u + y sgnHxL

,

Λ be the Lebesgue measure on R2, JHx, yL � H0, xL � H0, yL, mnHx, yL be given by

mnHx, yL � ΛIHUnL-1 HJHx, yLLM.

Then

mnHx, yL �
lnJ

1+x y

1-g
2

y
N

lnHGL
+ OHgnL.

GeneralizedKhinchinConstantLaw
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Let 0 < Ξ < 1 be an irrational number with the regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then for almost all Ξ and p < 1, p ¹ 0 the following p-dependent limit exists

lim
n®¥

1

n
â
k=1

n

b
k

p

1�p

� Kp

and is a fixed constant.

GeneralizedKhinchinConstantOfGeneralizedGaussMap

Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Gauss map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then for some Ξ Î H0, 1L the generalized regular continued fraction expansion

Ξ � K
j=1

n 1

b j

can be obtained through

b j � T
k

j
HΞL.

Then for almost all Ξ Î @0, 1D,

lim
n®¥

ä
j=1

n b j + 1 for b j > 0

¡b j¥ for b j < 0
� ä

j=1

¥ H j +  k¤L2

H j +  k¤L2 - 1

sgnHkL lnH jL�lnJ¢
k+1

k
¦N

.

GeneralizedKhinchinConstantOfGeneralizedRenyiMap
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Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Gauss map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then for some Ξ Î H0, 1L the generalized regular continued fraction expansion

Ξ � K
j=1

n 1

b j

can be obtained through

b j � T
k

j
HΞL.

Then for almost all Ξ Î @0, 1D

lim
n®¥

ä
j=1

n b j + 1 for b j > 0

¡b j¥ for b j < 0
� ä

j=1

¥ H j +  k¤L2

H j +  k¤L2 - 1

sgnHkL lnH jL�lnJ¢
k

k-1
¦N

.

GeneralizedKhinchinLevyTheoremOfGeneralizedGaussMap

Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Gauss map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then for some Ξ Î H0, 1L the generalized regular continued fraction expansion

Ξ � K
j=1

¥ 1

b j

with convergents An � Bn can be obtained through

b j � T
k

j
HΞL.

Then for almost all Ξ Î @0, 1D

lim
n®¥

ln
 Bn¤

n

�

lnK  k¤ O -
1

ln
 k¤+1

 k¤

+ Li2J-
1

 k¤
N for k > 0

ln K  k¤ O -
1

ln
 k¤+1

 k¤

+ Li2J 1

 k¤
N for k < 0.

GeneralizedKhinchinLevyTheoremOfGeneralizedRenyiMap
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Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Ré nyi map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then for some Ξ Î H0, 1L the generalized regular continued fraction expansion

Ξ � K
j=1

¥ 1

b j

with convergents An � Bn can be obtained through

b j � T
k

j
HΞL.

Then for almost all Ξ Î @0, 1D

lim
n®¥

ln
 Bn¤

n

�

lnK  k¤ O -
1

ln
 k¤+1

 k¤

+ Li2J-
1

 k¤
N for k < 0

ln K  k¤ O -
1

ln
 k¤+1

 k¤

+ Li2J 1

 k¤
N for k > 0.

GeneralRotationRelationForFiniteRegularContinuedFraction

s

Let Ξ be a finite regular continued fraction

Ξ � b0 + K
Κ=1

n 1

bk

.

Let k, l, m, n Î Z
+ and k < l < m < n. Then the following identity holds:

ä
j=k

l-1

b j + K
Κ= j+1

n 1

bΚ

´ ä
j=m+1

n

b j + K
Κ=1

j-l 1

b j-Κ

�

ä
j=m+1

n

b j + K
Κ=1

j-k 1

b j-Κ

ä
j=k

l-1

b j + K
Κ= j+1

m 1

bΚ

.

GeometricInterpretationOfInefficientContinuedFractionSeq

uences
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Let Ξ be an integer continued fraction,

Ξ � K
n=1

¥ 1

bn

,

rn be the continued fraction convergent of Ξ, and Λn be a consecutive subse�

quence of bn.  Then  bn¤ ³ 2 and there does not exist Λn which is inefficient is 

equivalent to rn being a Farey geodesic.

GloballyAnalyticHypoellipticAreNotNecessarilyGloballyHyp

oelliptic

Let Α be the irrational whose continued fraction an � 10-n!.  Then

V � d �dx - Α d �dy

is globally analytic hypoelliptic but not globally hypoelliptic.

GoldenRatio
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The oft-studied golden ratio Φ has a number of equivalent definitions framed in 

a variety of different contexts. Historically, the golden ratio is defined to be the 

unique number x for which a rectangle of side ratio 1 : x can be divided into a 

unit square and a separate rectangle whose side ratio is also 1 : x, i.e., it is the 

division of a given length into two parts such that the ratio of the shorter to the 

longer equals the ratio of the longer part to the whole. Therefore, Φ is the 

unique positive real number for which the identity

Φ

1
�

1

Φ - 1.

The constant Φ and its various properties have been studied since antiquity with 

various constructions attributed to Euclid and Pythogoras, among others.

Simplifying the above identity, Φ is thus the unique positive real number for 

which Φ2 � Φ + 1. Dividing both sides by Φ yields Φ � 1 + 1 � Φ and thereby yields 

a recursive definition of Φ whose first few terms have the form

Φ � 1 +
1

Φ
� 1 +

1

1 +
1

Φ

� 1 +
1

1 +
1

1+
1

Φ

º.

As this suggests, Φ is the unique real number whose regular continued fraction 

has the form Φ � @1; 1, 1, 1, … D or, in Gauss notation,

Φ � 1 + K
m=1

¥ 1

1
.

Solving the above equation algebraically yields the exact value of Φ, namely 

Φ � I1 + 5 M �2 which, to fifty decimal places, is equal to

Φ � 1.61803398874989484820458683436563811772030917980576 … .

In addition to the above, one can find a vast number of connections between Φ 

and the theory of continued fractions. For example, it is a well-known fact that 

9Φn+1=
n�-1

¥
 and 9Ψn+1=

n�-1

¥
 are both solutions to the three-term recurrence 

relation Xn � Xn-1 + Xn-2, n � 1, 2, 3, … , where Φ is as above and where 

Ψ � I1 - 5 M �2 is the second solution of the equation x2 - x - 1 � 0, and 

because 9Φn+1= and 9Ψn+1= are C-linearly independent elements, they form a 

basis of the vector space L, the solution space of the recurrence relation above 

and a degree 2 vector space over C. Moreover, because the canonical partial 

numerators 8An<
n�1
¥ , respectively partial denominators 8Bn<

n�1
¥ , of an arbitrary 

continued fraction Ξ � KHan �bnL are also elements of L, it follows that An and Bn 

are C-linear combinations of Φn+1 and Ψn+1 for any arbitrary continued fraction 

Ξ � KHan �bnL, n � 1, 2, 3, … . Among the significant ramifications of this are the 

so-called Binet’s formula, as well as a multitude of significant literature in areas 

ranging from operator theory to algebraic field theory and beyond.

GoodBirthRateForContinuedFractions
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GoodBirthRateForContinuedFractions

Let q be a real number where 0 £ q £ 1,

ΞHqL � K
n=1

¥ aHnLHqL

bnHqL

be a generalized continued fraction, f HqL be the birth-death process from 

continued fraction of ΞHqL, k be a positive real, and CHqL be a positive real. Then 

given bn < k, 0 £
d aHnLHqL

dq
£ CHqL, and 0 £ -

dbnHqL

dq
£ CHqL, it follows that 

$0£q1£1 H f HqL is good Í q £ q1L.

GoodBirthRateForRogersRamanujanContinuedFractions

Let q be a real number where 0 £ q £ 1, Ξ be the Rogers Ramanujan continued 

fraction of q, and Λn be positive reals of its associated birth-death process, i.e., 

where

Λ0 � 1

and

Λn-1 H1 - ΛnL � q
n
.

Then $0£q1£1 "80<q<q1,n< Λn > 0.

GraggWarnerHenriciPflugerBounds

Let

Ξ � K
k=1

N ak

bk

be a generalized continued fraction whose convergents are denoted wn and 

an > 0 and ReHbnL > 0.  Set

Αn �
an

ReHbn-1L ReHbnL
.

Then for all m ³ n,

 wm - wn-1¤ < 2 Α1 ä
i=2

n 4 Αi + 1 - 1

4 Αi + 1 + 1

.

GraphPropertiesAssocatedWithHypocycloidConvergents
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Consider the closed hypocycloid S of q cusps whose parameterized form is 

given by

SHtL �
xHtL � HΘ - 1L r cosHtL + r cosHHΘ - 1L tL
y HtL � HΘ - 1L r sin HtL + r sin HHΘ - 1L tL

for 0 < Θ � p �q < 1 and let Ξ � @0; b1, b2, … D denote the simple continued 

fraction corresponding to t with convergents Ξn � An � Bn, n � 0, 1, 2, … . Then 

the sequence 8 Bn t - An¤<
n�0
¥  decreases to zero as n ® ¥, whereby it follows that 

the convergents Ξn correspond to nearly equally-spaced sets of Bn cusps in the 

graph of S. Moreover, because

Bn  Bn t - An¤ <
Bn

Bn+1

£
1

bn+1

for n � 0, 1, 2, …  and because cusps of S “clump” for near-minimum values of 

Bn  Bn t - An¤, it follows that large values of the partial quotients bn of Ξ also 

result in cusp “clumping” for the graph of S.

HallTheorem

Hall’s theorem says that any real number t can be decomposed into a sum of 

the form

t � n + @0; b1, b2, … D + @0; b1
*
, b2

*
, … D

where n Î Z and where 1 £ bk, b
k

* £ 4 for k � 1, 2, 3, … . Named after mathemati�

cian Marshall Hall, Hall’s theorem is meant to provide the set R of real numbers 

an analogue of a certain decomposition property Cantor’s middle thirds set C, 

namely that C satisfies the identity

C + C � I + I

where I � @0, 1D. Though difficult, Hall’s original paper provides details on a 

slew of continued fraction constructions and properties; Rockett and Szüsz 

provide a second, more concrete elaboration.

HamburgerAssociatedSeriesConvergenceTheorem
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Let

S � â
k=1

¥
ck

z
k

be a formal power series with coefficients ck such that for all n there exist 

constants M and Ρ so that

 cn¤ £ M

Hn - 1L !

Ρn-1

holds and the Hankel determinant of the c1, c2, …

Cn �

c1 c2 … cn-1 cn

c2 c3 … cn cn+1

» » ¸ » »

cn-1 cn … c2 n-3 c2 n-2

cn cn+1 … c2 n-2 c2 n-1

is positive for all n. Then the associated Perron continued fraction of S with 

variable z converges uniformly in any part of the complex z-plane that does not 

contain the real axis.

HankelDeterminant

Given a formal power series of the form f0 HzL � Ún�0
¥

cn z
-n-1, the corresponding 

Hankel determinants Hk, k � 0, 1, … , have the form H0 � 1 and

Hk �

c0 c1 º ck-1

c1 c2 º ck

» » ¸ »

ck-1 ck-2 º c2 k-2

.

HarmanWongConvergentsNumeratorDenominatorPropert

y
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Let the set of positive integers 8c1, c2.… < be called an acceptable set if

gcdIc j, c j+1, mM � 1 for 1 < j < n - 1

c j+2 � c j mod gcdIc j+1, mM for 1 < j < n - 2

for a positive integer m.  (If the set is of length 2, 8c1, c2< it is acceptable if 

gcdHc1, c2, mL � 1; all sets of length 1 are acceptable.)  Let Ξ be an irrational 

nonalgebraic real number with regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

with convergents numerators An and Bn.

For almost all Ξ, there are infinitely many j such that

A j+i � ci Hmod mL for 1 < i < n

and

B j+i � ci Hmod mL for 1 < i < n.

If the set of positive integers 8c1, c2.… < is not acceptable, then there are no 

solutions for

A j+i � ci Hmod mL for 1 < i < n

and

B j+i � ci Hmod mL for 1 < i < n

for any Ξ.

HarmanWongDenominatorValueMeasure
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Let Sm be the set of positive integers 8c1, c2, … , cm<.

Let Ξ  be an irrational nonalgebraic real number with regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

The number of matches CSm,N

a j+i � ci

for j £ N is for almost all Ξ asymptotically

CS,N ~ HΜHΡL - ΜHΣLL N

where

ΜHxL � log
2

Hx + 1L

and

Ρ �
0 + K

k=1

¥
1

ck+∆k,n

for m even

0 + K
k=1

¥
1

ck

for m odd

Σ �
0 + K

k=1

¥
1

ck

for m even

0 + K
k=1

¥
1

ck+∆k,n

for m odd.

HaydenConvergenceTheorem

Let Ξ be the continued fraction

Ξ � K
k=1

¥

1 for k � 1

ak for k > 1

1

with the sequence of convergents Ak � Bk. If there exist constants s > 0 and q > 0 

and 0 < r < 1, such that

 a3 n-1¤ ³ H1 + q + sL2

 a3 n¤ ³ r q

 a3 n+1¤ ³ r s

then the sequence of convergents

Αk �
AI1-H-1Lk+6 kM�4

BI1-H-1Lk+6 kM�4

converges.

HaydenRegionSequenceConvergenceTheorem1
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HaydenRegionSequenceConvergenceTheorem1

Let V � 8V1, V2, … < of regions of the complex plane where each Vn is the form 

8z :  z¤ £ Rn< or 8z :  z¤ ³ Rn< for Rn Î R.

If for every p > 1, Vp or Vp+1 is bounded and there exist sequences of numbers 

0 < gn < 1 and 0 < rn £ 1 such that

 z¤ £ rn gnH1 - gn-1L if Vn is bounded

 z¤ ³ H2 - gnL if Vn is unbounded

and if P � 8p1, p2, … < are all indices of the sequence V such that Vpk
 is 

unbounded and P is either finite or Ûj=1
¥

rp j
� 0, then for any sequence of 

complex numbers ak Î Vk, the continued fraction

Ξ � K
k=1

¥

1 for k � 1

ak for k > 1

1

converges.

HaydenRegionSequenceConvergenceTheorem2

Let V � 8V1, V2, … < of regions of the complex plane where each Vn is the form 

8z :  z¤ £ Rn< or 8z :  z¤ ³ Rn< for Rn Î R.

If for every p > 1, Vp or Vp+1is bounded and there exists a sequence of numbers 

0 < gn < 1 such that

 z¤ £ gnH1 - gn-1L if Vn is bounded

 z¤ ³ H2 - gnL if Vn is unbounded

and if

â
r=1

¥

ä
j=1

r  z¤ £
gn

1-gn

if Vn is bounded

 z¤ ³
2-gn

1-gn

if Vn is unbounded
< ¥

then for any sequence of complex numbers ak Î Vk, the continued fraction

Ξ � K
k=1

¥

1 for k � 1

ak for k > 1

1

converges absolutely.

HaydenRegionSequenceDivergenceTheorem1
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Let V � 8V1, V2, … < of regions of the complex plane where each Vn is the form 

8z :  z¤ £ Rn< or 8z :  z¤ ³ Rn< for Rn Î R.

If there exists an integer p > 1 such that both, Vp and Vp+1 are unbounded, then 

there exists a sequence of complex numbers ak Î Vk such that the continued 

fraction

Ξ � K
k=1

¥

1 for k � 1

ak for k > 1

1

diverges.

HaydenRegionSequenceDivergenceTheorem2

Let V � 8V1, V2, … < of regions of the complex plane where each V3 n-1 is the 

form 8z :  z¤ ³ s< where s > 0, each V3 n-1 is the form 8z :  z¤ £ 1< where s > 0, and 

each V3 n+1 is the form 8z :  z¤ £ 1<.

Then there exists a sequence of complex numbers ak Î Vk such that the contin�

ued fraction

Ξ � K
k=1

¥

1 for k � 1

ak for k > 1

1

diverges.

HigherOrderKhinchinConstants
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One constant that comes up regularly in the study of the ergodic theory of 

regular continued fractions is Khinchin’s constant K.  However, K � K0 is 

merely one of an infinite family of Hölder means Kp, p < 1, associated to regu�

lar continued fractions. Indeed, let Ξ � @b0; b1, b2, … D be a regular continued 

fraction and define for each p < 1, p ¹ 0, the limit

Kp � lim
n®¥

1

n

Ib1

p
+ b2

p
+ … + bn

p
M
1�p

.

This value, which is an almost everywhere constant independent of Ξ or n, is 

called the pth order Khinchin constant or the Khinchin constant of order p. The 

“standard Khinchin constant” is then defined to be the limiting case 

K0 � limp®0 Kp.

The collection Kp possesses many unique and well-studied properties. For 

example, when p < 1 is nonzero, it can be shown that Kp has the almost every�

where equivalent forms

Kp �
1

lnH2L
â
i�1

¥

i
p

ln 1 +
1

iHi + 2L

1�p

�
1

lnH2L
à

0

1 Hd1 � ttLp

1 + t

â t

1�p

and that K0 has analogous expressions of the form

K0 � ä
i�1

¥

1 +
1

iHi + 2L

lnHiL�lnH2L

� exp
1

lnH2L
à

0

1 d1 � tt

1 + t

â t

almost everywhere. In addition to their obvious ties to the theory of continued 

fractions, the family of Khinchin means plays a significant role in the theories of 

polylogarithm and computing.

HillamThronConvergenceCorollary

Let Ξ be the continued fraction

Ξ � K
k=1

¥ ak

bk

.

Then Ξ converges if and only if there exists a c Î C and r Î R with  c¤ < r such 

that for all n ³ 1,

0 <  an¤ £ Hr -  c¤L H bn + c¤ - rL.

HillamThronConvergenceTheorem
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Let Ξ be the continued fraction

Ξ � K
k=1

¥ ak

bk

.

Let K be the disk 8z :  z - c¤ £ r< with  c¤ < r.  If

tnHzL Ì K

where

tnHzL �
an

bn + z

for all n ³ 1 and an ¹ 0, then Ξ converges and Ξ Î K.

HurwitzContinuedFractionCoprimeConvergentIdentity

Let x be an irrational number, Ξ be the Hurwitz continued fraction expansion of 

x, An be the convergent numerator of Ξ, and Bn be the convergent denominator 

of Ξ. Then

An Bn-1 - An-1 Bn � H-1Ln+1
.

ImproperlyEquivalent

Two complex numbers Ξ, Η Î C are called improperly equivalent if there exists 

an improperly unimodular map m such that Η � m HΞL.

ImproperlyUnimodularMap

A unimodular map m is called improperly unimodular if detHmL Î 8± ä<.

IndependentAndIdenticallyDistributedBernoulliRandomCont

inuedFractionsMarkovChainConvergesToNonatomicProbab

ility

Let Zn be an independent identically distributed Bernoulli random variable, P 

its probability expectation, and Xn a Markov chain defined by

Xn � 1 � Xn-1 + Zn.

Then Xn converges to a singular probability Π invariant under the Gauss map 

which is nonatomic.

IndependentAndIdenticallyDistributedBernoulliRandomCont

inuedFractionsMarkovChainConvergesToNonatomicProbab

ilityWithFullSupport
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IndependentAndIdenticallyDistributedBernoulliRandomCont

inuedFractionsMarkovChainConvergesToNonatomicProbab

ilityWithFullSupport

Let Zn be an independent identically distributed Bernoulli random variable, P 

its probability expectation, and Xn a Markov chain defined by

Xn � 1 � Xn-1 + Zn.

Then Xnconverges to a singular probability Π invariant under the Gauss map 

which is nonatomic.

InequalitiesForHausdorffDimensionForBoundedPartialQuoti

ents

Let E be a subset of the natural numbers less than or equal to n, EHRL be the 

regular continued fractions Ξ whose partial denominators lie in E, and H be the 

Hausdorff dimension. Then given n ³ 8, 

1 - 4 � Hn lnH2LL < HHEHRLL < 1 - 1 � H8 n lnHnLL.

InfiniteContinuedFractionsAreIrrational

Let

Ξ � K
n=1

¥ 1

bn

be a regular continued fraction. Then given bn > 0 for all n > 0, it follows that Ξ 

is irrational.

InfiniteQuadraticSurdsWithGivenContinuedFractionPeriod

For any k > 0, there are an infinite number of squarefree positive integers N 

whose continued fraction of N  has period k.

InfiniteSumContinuedFraction
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Let Ξ be a positive irrational number with continued fraction expansion

1

Ξ
� b0 + K

j=1

¥ 1

b j

with a j Î Z
+ and convergents An � Bn (with B-1 � 0).

For integer m ³ 1, define

SmHΞL � Hm - 1L â
j=1

¥

m
-d j Ξt

.

Then

SmHΞL � t0 + K
j=1

¥ 1

t j

,

where

t0 � m a0

tn �
m

Bn - m
Bn-2

m
Bn-1 - 1

.

InfiniteSumContinuedFractionConvergents
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Let Ξ be a positive irrational number with continued fraction expansion

1

Ξ
� b0 + K

j=1

¥ 1

b j

with a j Î Z
+ and convergents pn �qn (with q-1 � 0).  For integer m ³ 1, define

SmHΞL � Hm - 1L â
j=1

¥

m
-d j Ξt

with convergents Pn �Qn and

TmHΞL � Hm - 1L â
j=1

¥

m
-flH j ΞL

where flHxL � dxt for noninteger x and flHxL � x - 1 for integer x.

Then

Pn �
Ú
j=1

pn

m
qn-flH j qn�pnL for n even

Ú
j=1

pn

m
qn-d j qn�pnt for n odd

Qn �
m

qn - 1

m - 1

and

Pn

Qn

�
TmJ

qn

pn

N for n even

Sm J
qn

pn

N for n odd.

InvariantMeasureOfGeneralizedGaussMap

Let Tk, k Î H-¥, -1L Ü H0, ¥L be the generalized Gauss map

TkHxL �
1

k
1-x

x

-
1

k
1-x

x

.

Then the invariant measure Μk of Tk on the interval @0, 1D is given by

ΜkHxL �
sgnHkL

lnJ¢ k+1

k
¦N

1

x + k

.

Tk is ergodic with respect to Μk.

InvariantMeasureOfGeneralizedRenyiMap
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Let Tk, k Î H-¥, 0L Ü H1, ¥L be the generalized Ré nyi map

TkHxL �
1

k
x

1-x

-
1

k
x

1-x

.

Then the invariant measure Μk of Tk on the interval @0, 1D is given by

ΜkHxL �
sgnHkL

lnJ¢ k

k-1
¦N

1

x + k - 1
.

Tk is ergodic with respect to Μk.

InversionSymmetry

Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction. Then the following identity holds:

1

Ξ
� K

k=1

N

1 for k � 1

ak-1 for k ³ 2

b0 for k � 1

bk-1 for k ³ 2.

IrrationalPeriodicityTheoremForDExpansions

Let x be a real number, D be a measurable subset of @0, 1D, and Ξ

Ξ � K
n=1

¥ an

bn

be the D-expansion continued fraction for x. Then x is irrational if and only if 

an and bn are periodic.

IteratedGaussMapDifference
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Let Τ be the Gauss map

Τ : R ® Z

ΤHxL �
1

x

-
1

x

.

Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

and An � Bn the sequence of its convergents.  Then

Ξ - K
k=1

n ak

bk

�
H-1Ln ΤnHΞL

BnHBn + ΤnHΞL Bn-1L
.

IteratedLinearFractionalTransformation
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Much of the literature agrees that the first connection between linear fractional 

transformations and the theory of continued fractions is due to the work of 

Weyl.

On a technical level, there are a variety of ways to define a continued fraction 

which formalize the intuitive case of fractional representations of real numbers 

and one of the most fundamental ways of doing so is by way of an iteration of a 

specific linear fractional transformation. Given an ordered pair 

H8am<mÎZ
+, 8bm<mÎZ

*L of complex sequences for which am ¹ 0 for m ³ 1, define 

the sequences 8snHwL<nÎZ
*, 8SnHwL<nÎZ

* so that s0 HwL � b0 + w, 

sn HwL � an Hbn + wL-1 for n � 1, 2, 3, … , S0 HwL � s0 HwL, and

Sn HwL � Sn-1 HsnHwLL,

n � 1, 2, 3, … . By way of a simple substitution, it follows that, for 

n � 1, 2, 3, … , the approximant function SnHwL has the form

Sn HwL � Hs0 é s1 é s2 é º é snL HwL,

or equivalently,

Sn HwL � b0 +
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

.

Thus, evaluating Sn at w � 0 yields the finite generalized continued fraction Ξ of 

the form

Ξ � Sn H0L � b0 + K
m=1

n am

bm

.

One of the benefits of using this particular nomenclature when defining contin�

ued fractions is that defining related concepts like convergence, e.g., is a matter 

of a very simple notational extension: In particular, one could use the above 

definition to say that the sequence Ξn of convergents converges to an infinite 

continued fraction Ξ precisely when Ξ � limn®¥ Sn H0L. This definition is used 

throughout the book by Cuyt et al. and is relatively prevalent among continued 

fraction literature. More details can also be found in the 1970 article by Man�

dell and Magnus.

IteratedLogarithmLaw
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For a collection 8Yn< of identically distributed independent random variables 

with means Μn � 0 and variances varHYnL � 1, the iterated logarithm law says 

that with probability 1,

lim sup
n®¥

Sn

2 n lnHlnHnLL

� 1 and lim inf
n®¥

Sn

2 n lnHlnHnLL

� -1,

where Sn � Y1 + º + Yn.  The application of this concept to continued fractions 

is a result of the correspondence between the theory of power series related to 

random walks and the continued fraction representations of these power series.

IteratedLogarithmLawForNumberOfPartialQuotients

Let knHxL denote the exact number of partial quotients in the regular continued 

fraction expansion x � @bo; b1, b2, … D which can be obtained by considering the 

first n decimals of x.  Then for almost all x Î H0, 1L, there exists a constant Σ > 0 

for which

lim sup
n®¥

kn HxL -
6 lnH2L lnH10L

Π2
n

Σ 2 n lnHlnHnLL

� 1 and lim inf
n®¥

kn HxL -
6 lnH2L lnH10L

Π2
n

Σ 2 n lnHlnHnLL

� -1.

JacobiPerronAlgorithmTheoremInNDimensions

Let x be a real vector in n dimensions.  Then the Jacobi Perron algorithm of x 

produces a sequence of integral vectors akHnL where

lim
k®¥

@angle between x and akHnLD � 0.

JacobiPerronAlgorithmTheoremInTwoDimensions

Let x be a real two-dimensional vector.  Then the Jacobi Perron algorithm of x 

produces a sequence of integral vectors akHnL where

lim
k®¥

@angle between x and akHnLD � 0.

JacobiSymbolsOfConvergentsOfRegularContinuedFractionE

xpansion
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Let Ξ Î R Q have the regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

with convergents Ak � Bk. Then J Ak

Bk

N depends only on the residue classes 

b0, b1, … , bk, where bk º bk mod 4.

JacobiSymbolsOfRegularContinuedFractionExpansionOfE

Consider the regular continued fraction expansion of ã

ã � b0 + K
k=1

¥ 1

bk

.

with convergents Ak � Bk. Then

Ak+24

Bk+24

�
Ak

Bk

for all k. (Jacobi symbols that are not defined are treated as being equal.)

JonesThronConditionsForContinuedFractionCorresponden

ceToLaurentSeries

Let

ΞHzL � K
n=1

¥ anHzL

bnHzL

be a generalized continued fraction, Pn be the formal Laurent series satisfying

Pn � an+1 Pn+2 + bn Pn+1,

L �
P0

P1

be a formal Laurent series set, and Λ denote the Laurent exponent. Then given 

ΛHbn-1L + ΛHbnL < ΛHanL and ΛHbn-1L + ΛJ Pn

Pn+1

N < ΛHanL, it follows that ΞHzL corre�

sponds to the Laurent series L.

KhinchinConstant
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Named for its discoverer, Khinchin’s is a constant is a real number K defined to 

be the almost-everywhere asymptotic bound of the geometric means of the 

partial quotients of an arbitrary real number. Said differently, given a real 

number x with corresponding regular continued fraction Ξ � @b0; b1, b2, … D, let 

GnHxL denote the geometric mean of the first n partial quotients of Ξ, i.e.,

Gn HxL � Hb1 ×b2 º bnL1�n
.

Khinchin proved that for almost all x Î R,

lim
n®¥

Gn HxL � K

where K is a constant independent of n or x. It is unknown currently whether 

Khinchin’s constant K is irrational or transcendental, though to 50 decimal 

places, K can be computed to equal

K � 2.68545200106530644530971483548179569382038229399446 … .

Moreover, while it is known that nearly every real number has a regular contin�

ued fraction, the geometric mean of whose partial quotients approach K asymp�

totically, no such x Î R has been exhibited; on the other hand, several signifi�

cant real numbers have been shown to have regular continued fractions which 

do not approach K, among which are x � ã, x � 2 , x � 3 , and x � Φ, where 

Φ denotes the golden ratio. The regular continued fraction of K starts out 

K � @2; 1, 2, 5, 1, 1, 2, 1, 1, … D.

Khinchin’s derivation of the above-mentioned result is actually a corollary 

deduced from the proof of a much stronger result. In particular, he showed that 

if f HrL is a non-negative function defined on all r Î Z
+ and if there exist positive 

constants C and ∆ for which f HrL < C r
-∆

r , r � 1, 2, … , then for almost all 

real numbers x Î H0, 1L with associated regular continued fraction 

Ξ � @0; b1, b2, … D,

lim
n®¥

1

n
â
k�1

n

f HbkL � â
r�1

¥

f HrL
ln :1 +

1

rHr+2L
>

ln 2.

From this more general statement, Khinchin’s constant can be derived by 

defining f HrL � ln r, whereby the above equation can be rewritten as

lim
n®¥

b1 ×b2 º bn

n � ä
r�1

¥

1 +
1

rHr + 2L

ln r�ln 2

,

where the infinite product converges to K almost everywhere. As Khinchin 

himself notes, the phrasing of the original result is general enough to allow for 

an entire slew of interest results concerning probability densities related to 

continued fraction element distribution, etc., though he also notes that no 

analogue to the geometric mean result can be formulated for the arithmetic 

mean.

KhinchinConstantLaw
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KhinchinConstantLaw

Let 0 < Ξ < 1 be an irrational number with the regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then the following identity holds for almost all Ξ

lim
n®¥

ä
k=1

n

bk

1�n

� K,

where K is a fixed constant.

KhinchinDiamondVaalerTheorem

Let Ft be a positive arithmetical function, Ε be a positive real, Α be an irrational 

number where 0 £ Α £ 1, Ξ be a half-regular continued fraction of Α,

Ξ � K
n=1

¥ an

bn

,

SNHF, ΑL � â
n=1

N

FbHnL,

and cHN, Α, FL be a positive real where 0 £ cHN, Α, FL £ 1.  Then given

$Ε

Ú
j=1

N F
j

2

j
2

Ú
j=1

N
F j

j
2

2
£ N ln

-3�2-ΕHNL,

it follows that for almost all Α

SNHF, ΑL � max
1£n£N

FbHnL cHN, Α, FL +
1 + oHNL

lnH2L
â
i=1

¥

Fi ln 1 +
1

i H2 + iL
.

LagrangeQuadraticIrrationalyTheorem
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Let Ξ be a quadratic irrational, meaning a nonrational solution of a quadratic 

equation with rational coefficients. Then the regular continued fraction represen�

tation of Ξ,

Ξ � b0 + K
k=1

¥ 1

bk

is ultimately always periodic.

LambdaSubQFractionsHaveTheApproximationProperty

A number field is said to have the approximation property if for every 

“irrational” Α,

Α -
P

Q

<
1

k Q
2

is satisfied by infinitely many rational elements P �Q of the number field and k 

is a positive fixed constant.

The algebraic number field generated by

Λq � 2 cos
Π

q

for q an odd positive number ³3 has the approximation property.

LaneWallCharacterization

Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and An � Bn the sequence of its convergents. Let

â
n=1

m
An+1

Bn+1

-
An-1

Bn-1

< ¥.

Then the continued fraction Ξ converges if and only if its Stern-Stolz series 

diverges.

LaplaceTransformOfDurationOfExcursionByOccupationPro

cess
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Let Lt be an excursion of occupation process,

ΘHpL � infHt > 0, Lt � CL

be a duration of excursion for Lt with C > 0 and p > 0, and let Θ* be the Laplace 

transform of Θ. Then the continued fraction Θ* is an S-fraction and

Θ
*HpL �

HC + 1L FHp, C + p + 2, uL

HC + p + 1L FHp, C + p + 1, uL
,

where F is the Kummer function.

LebesgueMeasureOfRegularContinuedFractionsWithGivenI

nitialPartialDenominators

Let 0 < Ξ < 1 have the regular continued fraction expansion

Ξ � 0 + K
k=1

¥ 1

bk

.

The Lebesgue measure Λ of all Ξ in @0, 1D that have the initial partial denomina�

tors b1, b2, … , bn and where the partial denominator bn+1 has the value j is

Λ �
1

jH j+1L
for j � 1

sn+1

Hsn+ jL Hsn+ j+1L
for j > 1,

where

sn � K
k=1

n 1

bn-k+1

.

LeightonConjecture

Let the C-fraction

ΞHzL � K
j=1

¥ a j z
Α j

1

where a j Î C �0 and Αn Î Z
+ and

lim
n®¥

Αn � ¥

lim
n®¥

 an¤1�n � 1.

Then ΞHzL converges in the disk D � 8z :  z¤ < 1< to a function f HzL meromorphic 

in D and the boundary of D, is the natural boundary of meromorphicity for f HzL.

LevyConstant
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LevyConstant

The so-called Lé vy constant is intimately connected with the Khinchin constant 

K which provides an almost everywhere asymptotic bound on the geometric 

means of successive partial quotients for an arbitrary real number x Î R with 

regular continued fraction expansion Ξ. In particular, given x and Ξ as above 

with Ξn � An � Bn the nth convergent of Ξ, the almost everywhere bound of Bn

n

 

by a constant (indeed, Khinchin proved that there exist two absolute constants 

a, A with 1 < a < A for which a < Bn

n

< A for almost all x and sufficiently large 

n) leads naturally to the question of convergence: Might one be able to com�

pute an expected value for Bn

n

, and might one also be able to determine an 

associated law of large numbers for this quantity?

At around the same time as Khinchin’s works, Lé vy published affirmative results 

to both the above questions: In particular, he showed that for

Γ �
Π2

12 lnH2L

and for all sufficiently large n,

1

n

lnHBnL - Γ £ Ε HnL

for almost all t Î @0, 1, where ΕHnL is any positive function decreasing to zero as 

n ® ¥ for which Ún�1
¥ 1� IΕ2 HnL ×n2M converges. Said differently, Lé vy proved that 

Bn

n

® exp HΓL as n ® ¥. The constant ãΓ, which to 50 decimal places is equal to

ã
Γ � 3.27582291872181115978768188245384386360847552598237 … ,

is now known as Lé vy’s constant. Worth noting, however, is that the phrase 

“Lé vy’s constant” sometimes refers to other related quantities depending on the 

author: In particular, some authors use it to denote the exponent 

Γ � Π2 � H12 lnH2LL, which still other authors call the Khinchin-Lé vy constant. As a 

result, some caution must be exercised.

Both the properties possessed by and the proof which derives the Lé vy constant 

yield as corollaries many significant results which are of interest in their own 

right. For example, Khinchin proved as a corollary of his version of the deriva�

tion that almost all numbers Α Î R satisfies a more general analogue of the 

continued fraction approximation property, while still others were able to 

derive the same result using a variety of measure-theoretic techniques involving 

ergodic theory and the solution space L of a specific family of three-term 

recurrence relations. In a seemingly unrelated application, Corless was able to 

show that for an arbitrary real number x, the so-called Lyapunov exponent Λ of 

the Gauss map G evaluated at x has the form

Λ HxL � 2 Γ � à
0

1 lnH1 � xL

lnH2L H1 + xL
â Μ

where Μ denotes regular Lebesgue measure and where Γ is the exponent of the 

Lé vy constant; he also derived an analogous formula for the Khinchin constant 

K, namely

lnHKL � à
0

1 lnHd1 � xtL

lnH2L H1 + xL
â Μ.

Many other results related to the Lé vy constant can be found in the works of 

Khinchin, Lé vy, Finch, Corless, Rockett, and Szüsz, among others.
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to both the above questions: In particular, he showed that for
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author: In particular, some authors use it to denote the exponent 

Γ � Π2 � H12 lnH2LL, which still other authors call the Khinchin-Lé vy constant. As a 

result, some caution must be exercised.

Both the properties possessed by and the proof which derives the Lé vy constant 

yield as corollaries many significant results which are of interest in their own 

right. For example, Khinchin proved as a corollary of his version of the deriva�

tion that almost all numbers Α Î R satisfies a more general analogue of the 

continued fraction approximation property, while still others were able to 

derive the same result using a variety of measure-theoretic techniques involving 

ergodic theory and the solution space L of a specific family of three-term 

recurrence relations. In a seemingly unrelated application, Corless was able to 

show that for an arbitrary real number x, the so-called Lyapunov exponent Λ of 

the Gauss map G evaluated at x has the form

Λ HxL � 2 Γ � à
0

1 lnH1 � xL

lnH2L H1 + xL
â Μ

where Μ denotes regular Lebesgue measure and where Γ is the exponent of the 

Lé vy constant; he also derived an analogous formula for the Khinchin constant 

K, namely

lnHKL � à
0

1 lnHd1 � xtL

lnH2L H1 + xL
â Μ.

Many other results related to the Lé vy constant can be found in the works of 

Khinchin, Lé vy, Finch, Corless, Rockett, and Szüsz, among others.

LimitPeriodicContinuedFractionInequality1

Let Ξ � KHbn �1L � @0; b1, b2, … D be a limit periodic continued fraction, let b ¹ 0 

be the complex number b � limn®¥ bn chosen so that  arg Hb + 1 �4L¤ < Π and 

ReK 1 �4 + b O > 0, and suppose that for n ³ 1,

 bn - b¤ £ min
1

2

1

4
+ b +

1

4
-  b¤ ,

 b¤

2
.

Then

Ξ - Sn b +
1

4
-

1

2

Ξ - Sn H0L
£ 2 dn

 b¤ + b + b +
1

4
+

1

2

 b¤ J- b¤ + ¢b +
1

4
¦ +

1

4
N

,

where Sn H0L � An � Bn is the nth approximant of Ξ, Sn HwL � An+An-1 w

Bn+Bn-1 w
 is the 

approximant function for all complex numbers w, and dn � maxm³n  am - a¤.

LimitPeriodicContinuedFractionInequality2
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Consider a sequence bn, n � 1, 2, … , of strictly positive real numbers and let 

f HzL � KHbn z �1L � @0; b1 z, b2 z, … D be a convergent limit periodic S-fraction 

which tends to b � lim bn > 0 as n ® ¥. Then, for all complex values z with 

 arg HzL¤ < Π �2,

f HzL - Sn b z +
1

4
-

1

2

f HzL - SnH0L
£

4 dn

 x1¤ D

×

4  z¤ max
m³n

 bm - b¤

b  z¤ + Re b z +
1

4
- ¢b z +

1

4
¦ -

1

4

,

where Sn H0L � An HzL � Bn HzL � is the nth approximant of f HzL, Sn HzL � An+An-1 z

Bn+Bn-1 z
 is 

the approximant function for all complex z, dn � maxm³n  bm - b¤, and x1 is the 

solution of x2 + x - a � 0 for which D �  x1 + 1¤ -  x1¤ > 0.

LimitsOfPeriodicCDuallyRegularFractionsAreQuadraticIrrati

onals

Every periodic C-dually regular continued fraction Ξ converges to an irrational 

number Α Î R �Q which is quadratic over Q.

LimitsOfPeriodicCRegularFractionsAreQuadraticIrrationals

Every periodic C-regular continued fraction Ξ converges to an irrational number 

Α Î R �Q which is quadratic over Q.

LimitsOfRamanujanQSeries
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Define KnHqL as the generalized continued fraction for  q¤ > 1

KnHqL � K
k=1

¥ q
k

1

and let RHxL be the Rogers-Ramanujan continued fraction and KHxL be

KHqL �
q

1�5

RHqL
.

Then

lim
j®¥

K2 j+1HqL �
1

KJ-
1

q
N

and

lim
j®¥

K2 jHqL �
KJ 1

q
4

N

q

.

LiouvilleAlgebraicIndependence

Let Αi be a real,

Ξi � K
n=1

¥ 1

aHN, iL

be the regular continued fraction of Αi, with convergents pHN, iL �qHN, iL, r be a 

real, fi be a real-valued sequence with

lim
i®¥

fi � ¥,

and Ni define a subsequence of natural numbers.

Then given r > 1 such that

" Ii ³ 1 ì n ³ j ³ 1, aHNi+1, jL ³ qHNi, 1L fiM

" Ii ³ 1 ì n ³ j ³ 2, qHNi, j - 1L ³ r
fi qHNi, jLM

" Ii ³ 1 ì n ³ j ³ 2, qHNi + 1, j - 1L ³ r
fi qHNi + 1, jLM,

the Αi are algebraically independent.

LiouvilleAlgebraicIndependenceCorollary2
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Let Αi be a real number,

Ξi � K
n=1

¥ 1

aHN, iL

be the regular continued fraction of Αi, gi be real numbers,

lim
i®¥

gi � ¥,

and Ni be the subsequence of positive integers. Then given Τ > 1, r > 1,

" HN ³ 1, aHN + 1, 1L ³ aHN, 1LΤL

" HN ³ 1 ì n ³ j ³ 1, aHN, j - 1L ³ r aHN, jLL

" Hi ³ 1 ì n ³ j ³ 2, aHNi + 1, j - 1L ³ aHNi, 1LgiL,

the Αi are algebraically independent.

LiouvilleAlgebraicIndependenceCorollary3

Let gi be integers, Ξ be the regular continued fraction of Β, g be a non-negative 

integer, n be a positive integer, Β be an irrational number, gi be a real number, 

and define

Sgi
H ΒL � Hgi - 1L â

Ν=1

¥

gi

-d Β Νt
.

Then given gi ³ 2 with distinct values and Ξ has bounded partial quotients, 

Sgi
H ΒL are algebraically independent.

LiouvilleContinuedFractionTheorem

Let Α be an algebraic real number and Ξ be its regular continued fraction with 

partial denominator bn, and Bn its convergent denominator, and let d be the 

algebraic degree of Α.  Then there exists a C > 0 such that for all integer n ³ 1, 

bHnL < C BHnLd-2.

LochsConstant
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There are no fewer than two distinct constants attributed to Lochs. The first 

and by far most popular is derived as part of Lochs’ theorem concerning the 

asymptotic relation between the decimal and regular continued fraction expan�

sions of arbitrary real numbers x. Proved in the 1960s, Lochs’ theorem says that 

for (Lebesgue) almost all real numbers x for which mHx, nL regular continued 

fraction “digits” (i.e., partial quotients) needed to determine n decimal digits,

lim
n®¥

mHx, nL

n

�
6 lnH2L lnH10L

Π2.

The above limit, sometimes denoted LL0
, is what is most widely-acknowledge to 

be Lochs’ constant; to 50 decimal places,

LL0
� 0.97027011439203392574025601921001083378128470478516 º.

Numerically, LL0
 indicates that 100 decimal digits of every real number x Î R 

can be unambiguously determined for every 97.02 …  partial quotients of the 

regular continued fraction ΞHxL associated to x with the exception of a set of 

(Lebesgue) measure zero.

This definition is remarkable in that the asymptotic limit LL0
 is absolutely 

constant and hence is independent of the real number x Î R in question. 

Because of its significance, modifying and generalizing Lochs’ proof has been at 

the heart of a great deal of literature. For example, Lochs’ theorem was proved 

by Bosma, Dajani and Kraaikamp to be a specific case of the so-called Shannon-

McMillan-Breiman theorem characterizing the asymptotic behavior of the 

measure-theoretic properties of an ergodic transformation S with respect to its 

entropy hHSL. Additional results relating LL0
 with the theory of entropy and 

transformations, see the works of Kraaikamp, Billingsley, and Nakada. More�

over, LL0
 has been shown to be intimately connected to the works of both 

Khinchin and Lé vy and to the eponymous constants K and ãΓ, respectively.

As mentioned initially, there is no apparent agreement on which constant 

should be attributed to Lochs. Indeed, some literature refers to the multiplica�

tive reciprocal L
L0

-1 of the above-mentioned constant (which is also equal to two 

times the base-10 logarithm of Lé vy’s constant ãΓ) as Lochs’ though, of the two, 

LL0
 appears to be the more common choice.

LochsTheorem
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Let x be an irrational number where 0 < x < 1  and

dnHxL � 10
-n d10

n
xt

enHxL � 10
-n Hd10

n
xt + 1L

be decimal approximations of x, m be a Lebesgue measure set,

x � K
n=1

¥ 1

an

be the regular continued fraction of x,

dnHxL � K
n=1

¥ 1

b1HnL

be the regular continued fraction of dnHxL,

enHxL � K
n=1

¥ 1

b2HnL

be the regular continued fraction of enHxL, and

knHxL � supH8i : " i £ n, b1HiL � b2HiL<L.

Then

for almost all x, lim
n®¥

kn

n

�
6 lnH2L lnH10L

Π2
.

LorentzenConditionsForContinuedFractionCorrespondenc

eToLaurentSeries

Let

ΞHzL � K
n=1

¥ anHzL

bnHzL

be a generalized continued fraction, Xn be the formal Laurent series where

Xn � an Xn-2 + bn Xn-1,

L � -
X0

X-1

be a formal Laurent series, and Λ denote the Laurent exponent. Then given 

ΛHbn-1L + ΛHbnL < ΛHanL and ΛHbnL < ΛJ Xn

Xn-1

N, it follows that ΞHzL corresponds to L.

LowerBoundForBestRationalApproximation
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Let Α be a rational number where 0 £ Α £ 1, Ξ be the regular continued fraction 

of Α, An be the convergent numerator of Ξ, and Bn be the convergent denomina�

tor of Ξ.  Then  An - Α Bn¤ ³
1

2 B1+n

.

LowerBoundForLyapunovExponentsOfGaussMap

Let GHxL denote the Gauss map defined piecewise as

GHxL �
x for x � 0

x - dxt for x ¹ 0,

and for an arbitrary real number Γ, let

ΛHΓL � lim
n®¥

1

n

ln ä
i�0

n

 G¢HΓiL¤

denote Lyapunov exponent of the orbits of the Gauss map (provided the limit 

exists) where Γ0 � G HΓL, Γk+1 � G HΓkL for k � 1, 2, … , and G¢ denotes the 

derivative of G in the usual sense. Under this construction, no orbit of the Gauss 

map has Lyapunov exponent smaller than Λ H1 � ΦL � 2 ln Φ.

LowerBoundPeriodsForNonSchinzelQuadratics

For an integer X, let

dHXL � A
2

X
2

+ 2 B X + C

be a polynomial, A, B, C be integers,

D � B
2

- A
2

C

∆ �
D

gcdHA BL2

x � dHXL

be quadratic irrational numbers, Ξ be the regular continued fraction of x, and 

lHXL be the regular continued fraction period of Ξ.  Given A > 0 and 

I4 gcdIA2
BM2M mod D ¹ 0, then lHXL ³ 1 + 2 lnK dHXL O � lnH∆L.

LubinskyCounterexampleToGeneralPadeConjecture
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Let HqHzL be a Rogers Ramanujan continued fraction where

q � ã
4 ä Π�J99+ 5 N

.

Then HqHzL is a counterexample to the Padé  conjecture.

LyapunovExponent

Let GHxL denote the Gauss map which is defined piecewise as

GHxL �
x for x � 0

x - dxt for x ¹ 0.

For an arbitrary real number Γ, the Lyapunov exponents Λ of the orbits of the 

Gauss map are defined as

ΛHΓL � lim
n®¥

1

n

ln ä
ä�0

n

 G¢HΓäL¤

provided the limit exists, where Γ0 � G HΓL, Γk+1 � G HΓkL for k � 1, 2, … , and 

where G¢ denotes the derivative of G in the usual sense. Conceptually, the 

Lyapunov exponent can be thought of as the average rate of separation 

between the orbits of points which are initially close as they are iterated under 

the Gauss map.

MarkovTheorem

Given a Borel measure Σ on R - @A, BD with Chebyshev continued fraction Ξ, 

then Ξ converges uniformly on compact sets to the Markov function associated 

to Σ.

MarkovTheoremForRationalPerturbationsOfMarkovFunctio

ns
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Let A < B and

D � C - @A, BD

be a domain, r be a complex rational function, Σ be a positive Borel measure 

set, Σ
` HzL be the Markov function of Σ,

f � rHzL + Σ
` HzL

be a meromorphic function, fnHzL be the Padé  approximants diagonals, and g be 

a chordal metric on the Riemann sphere. Then given D@ΣD > 0 almost every�

where in @A, BD, it follows that fnHzL converges uniformly on D in the chordal 

metric on the Riemann sphere.

Mediant

The mediant of two rational numbers a �b < c �d is defined to be the rational 

number Ha + cL � Hb + dL. By observation, the mediant can be seen to satisfy

a

b

<
a + c

b + d

<
c

d

.

MeromorphicExtensionsOfCertainJFractions

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose without loss of general�

ity that lim an � 1 �4, lim bn � 0. Assume, too, that for some R > 1,

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥,

and let Ω � Ω HzL denote the transformation

ΩHzL �
1

2
IHz + 1L1�2

- Hz - 1L1�2M2

for all z Î C
* � C � @-1, 1D under the assumption that the roots of Ω are strictly 

positive for z > 1. Under these hypotheses, f HzL can be extended to a meromor�

phic function on all of C** where C** is the complete 2-sheeted Riemannian 

surface obtained by analytic extension of Ω from C* across @-1, 1D into a second 

copy of C*.

MonotoneBehaviorOfEvenAndOddContinuedFractionConv

ergents

Results.nb    193



MonotoneBehaviorOfEvenAndOddContinuedFractionConv

ergents

Let Ξ � @0; b1, b2, … D be a continued fraction (either finite or infinite) which 

converges to some number Α and let An � Bn denote its nth convergent, 

n � 1, 2, … . Then the sequence 8A2 n-1 � B2 n-1<
n�1
¥  of odd convergents of Ξ 

increase to Α and the sequence 8A2 n � B2 n<
n�1
¥  of even convergents decrease to Α.

MuellerContinuedFraction

Given real numbers p and q, let

C �
x

p H1 - xLq-1 GHp + qL

GHp + 1L GHqL

ΜHsL �
q - s

p + s

bn �

1 for n � 1

-
x Hp+s-1L Hp+sL ΜHsL

H1-xL HHp+2 s-2L Hp+2 s-1LL
for n � 2 s

s x Hp+q+sL

H1-xL HHp+2 s-1L Hp+2 sLL
for n � 2 s + 1.

Then the continued fraction

Ξ � K
n=1

¥ 1

bn

converges to

Ξ �
BxHp, qL

C BHp, qL
.

MultidimensionalContinuedFraction

A multidimensional continued fraction is an extension of the notion of contin�

ued fraction representations of real numbers to n-tuples Ha1, a2, … , anL in Rn, 

n > 1. First proposed in 1839 by Hermite, the idea of generalizing real contin�

ued fractions to higher dimensions has been the focus of a considerable amount 

of literature. It should come as no surprise, then, that the phrase 

“multidimensional continued fraction" exists in a variety of contexts as penned 

by many different authors; a few of those expositions are summarized here.

One of the earliest attempts at such a generalization is due to Jacobi who, in 

1868, published an algorithm for computing so-called ternary continued frac�

tions @Hp1, q1L; Hp2, q2L; … D whose elements Hpk, qkL are all ordered pairs of real 

numbers. More precisely, Jacobi’s algorithm associates to triples u1, v1, w1 Î R 

of real numbers a continued fraction of the form

v1

u1

,
w1

u1

� @Hp1, q1L; Hp2, q2L; Hp3, q3L; … D

whose nth convergents HBn � An, Cn � AnL satisfy the four-term recurrence relations

An � qn An-1 + pn An-2 + An-3,

Bn � qn Bn-1 + pn Bn-2 + Bn-3,

Cn � qn Cn-1 + pn Cn-2 + Cn-3,

where un+1 � vn - pn un, vn+1 � wn - qn un, wn+1 � un, pn � dvn �unt, and 

qn � dwn �unt. The upshot of Jacobi’s method is that it possesses many obvious 

properties analogous to the case of standard continued fraction representations 

of real numbers. On the other hand, Jacobi’s algorithm left much to be desired, 

most notably the fact that many observable patterns were largely unprovable at 

the time.

Since then, many different, largely more general notions of multidimensional 

continued fractions have been devised. One of the more well-known of these is 

due to Szerkeres, who devised an algorithm whereby sequences @b1, b2, … D of 

positive integers called continued k-fractions are associated with k-tuples 

HΑ1, Α2, … , ΑkL of real numbers via a rather in-depth set theoretic construction. 

Like Jacobi’s, Szerkeres’ algorithm yields a highly-analogous continued fraction 

theory. For example, Cusick’s exposition on the Szerkeres algorithm illustrates 

the process of defining sets of integer k-tuples, respectively Hk + 1L-tuples

AHn, jL � IAH1L Hn, jL, … , A
HkL Hn, jLM,

respectively

HB Hn, 0L, B Hn, 1L, … , B Hn, kLL,

manipulations of which produce nth approximations Pn �Qn � AHsn, 0L � BHsn, 0L 
for the k-fraction @b1, b2, … D of HΑ1, Α2, … , ΑkL which satisfy the identity

lim
n®¥

A
HiLHsn, 0L

BHsn, 0L
� Αi

for each i � 1, 2, … , k where, here, sn � Ú
k�1
n

bk, n � 1, 2, 3, … . This identity is 

the multidimensional analogue of the fact that limn®¥ An � Bn � Α for real one-

dimensional continued fractions Ξ with nth convergents Ξn � An � Bn. More 

details of this particular construction can be found in Cusick and its references.

Still another popular exposition is due to Schweiger, who approaches the 

construction via matrices rather than sequences. In particular, Schweiger 

defines a fibered system HB, TL to be a set B and a mapping T : B ® B with the 

property that one can partition B into sets 8BHiL : i Î I< with the property that 

T BHiL is injective for all i Î I. Here, I is an indexing set which is as most count�

ably infinite. Under this construction, HB, TL is said to be a multidimensional 

continued fraction (also called piecewise fractional linear) provided that B Î R
n 

for some n and that for every “digit” k Î I, there exists an invertible matrix

Α � Α HkL � IIAi jMM Î G L Hn + 1, ZL,

0 £ i, j £ n, such that

yi � HT xLi �
Ai 0 + Ú

i�1

n

Ai j x j

A00 + Ú
j�1

n

A0 j x j

for every x Î B HkL Ì R
n.

Other definitions of various depths and contexts can be found throughout the 

literature. A purely geometrical definition can be found in Karpenkov whose 

motivation lies in the related work of Klein dating back to the late 19th century. 

A more technically sophisticated approach centered on linear algebra and 

functional analysis can be found in Khanin et al. Functional multidimensional 

continued fractions, including branched continued fractions, are discussed in 

the thesis of Aryal, who also examines convergence of multidimensional contin�

ued fractions and the relationships between such fractions and so-called multi�

ple power series. Though apparently rare, a small portion of the literature 

compares various multidimensional fraction constructions, e.g., Schweiger, who 

examines his construction and its properties relative to the constructions of 

Jacobi and others. For other similar resources, see the introduction of 

Karpenkov as well as its references.
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A multidimensional continued fraction is an extension of the notion of contin�

ued fraction representations of real numbers to n-tuples Ha1, a2, … , anL in Rn, 

n > 1. First proposed in 1839 by Hermite, the idea of generalizing real contin�

ued fractions to higher dimensions has been the focus of a considerable amount 

of literature. It should come as no surprise, then, that the phrase 

“multidimensional continued fraction" exists in a variety of contexts as penned 

by many different authors; a few of those expositions are summarized here.

One of the earliest attempts at such a generalization is due to Jacobi who, in 

1868, published an algorithm for computing so-called ternary continued frac�

tions @Hp1, q1L; Hp2, q2L; … D whose elements Hpk, qkL are all ordered pairs of real 

numbers. More precisely, Jacobi’s algorithm associates to triples u1, v1, w1 Î R 

of real numbers a continued fraction of the form

v1

u1

,
w1

u1

� @Hp1, q1L; Hp2, q2L; Hp3, q3L; … D

whose nth convergents HBn � An, Cn � AnL satisfy the four-term recurrence relations

An � qn An-1 + pn An-2 + An-3,

Bn � qn Bn-1 + pn Bn-2 + Bn-3,

Cn � qn Cn-1 + pn Cn-2 + Cn-3,

where un+1 � vn - pn un, vn+1 � wn - qn un, wn+1 � un, pn � dvn �unt, and 

qn � dwn �unt. The upshot of Jacobi’s method is that it possesses many obvious 

properties analogous to the case of standard continued fraction representations 

of real numbers. On the other hand, Jacobi’s algorithm left much to be desired, 

most notably the fact that many observable patterns were largely unprovable at 

the time.

Since then, many different, largely more general notions of multidimensional 

continued fractions have been devised. One of the more well-known of these is 

due to Szerkeres, who devised an algorithm whereby sequences @b1, b2, … D of 

positive integers called continued k-fractions are associated with k-tuples 

HΑ1, Α2, … , ΑkL of real numbers via a rather in-depth set theoretic construction. 

Like Jacobi’s, Szerkeres’ algorithm yields a highly-analogous continued fraction 

theory. For example, Cusick’s exposition on the Szerkeres algorithm illustrates 

the process of defining sets of integer k-tuples, respectively Hk + 1L-tuples

AHn, jL � IAH1L Hn, jL, … , A
HkL Hn, jLM,

respectively

HB Hn, 0L, B Hn, 1L, … , B Hn, kLL,

manipulations of which produce nth approximations Pn �Qn � AHsn, 0L � BHsn, 0L 
for the k-fraction @b1, b2, … D of HΑ1, Α2, … , ΑkL which satisfy the identity

lim
n®¥

A
HiLHsn, 0L

BHsn, 0L
� Αi

for each i � 1, 2, … , k where, here, sn � Ú
k�1
n

bk, n � 1, 2, 3, … . This identity is 

the multidimensional analogue of the fact that limn®¥ An � Bn � Α for real one-

dimensional continued fractions Ξ with nth convergents Ξn � An � Bn. More 

details of this particular construction can be found in Cusick and its references.

Still another popular exposition is due to Schweiger, who approaches the 

construction via matrices rather than sequences. In particular, Schweiger 

defines a fibered system HB, TL to be a set B and a mapping T : B ® B with the 

property that one can partition B into sets 8BHiL : i Î I< with the property that 

T BHiL is injective for all i Î I. Here, I is an indexing set which is as most count�

ably infinite. Under this construction, HB, TL is said to be a multidimensional 

continued fraction (also called piecewise fractional linear) provided that B Î R
n 

for some n and that for every “digit” k Î I, there exists an invertible matrix

Α � Α HkL � IIAi jMM Î G L Hn + 1, ZL,

0 £ i, j £ n, such that

yi � HT xLi �
Ai 0 + Ú

i�1

n

Ai j x j

A00 + Ú
j�1

n

A0 j x j

for every x Î B HkL Ì R
n.

Other definitions of various depths and contexts can be found throughout the 

literature. A purely geometrical definition can be found in Karpenkov whose 

motivation lies in the related work of Klein dating back to the late 19th century. 

A more technically sophisticated approach centered on linear algebra and 

functional analysis can be found in Khanin et al. Functional multidimensional 

continued fractions, including branched continued fractions, are discussed in 

the thesis of Aryal, who also examines convergence of multidimensional contin�

ued fractions and the relationships between such fractions and so-called multi�

ple power series. Though apparently rare, a small portion of the literature 

compares various multidimensional fraction constructions, e.g., Schweiger, who 

examines his construction and its properties relative to the constructions of 

Jacobi and others. For other similar resources, see the introduction of 

Karpenkov as well as its references.
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A multidimensional continued fraction is an extension of the notion of contin�

ued fraction representations of real numbers to n-tuples Ha1, a2, … , anL in Rn, 

n > 1. First proposed in 1839 by Hermite, the idea of generalizing real contin�

ued fractions to higher dimensions has been the focus of a considerable amount 

of literature. It should come as no surprise, then, that the phrase 

“multidimensional continued fraction" exists in a variety of contexts as penned 

by many different authors; a few of those expositions are summarized here.

One of the earliest attempts at such a generalization is due to Jacobi who, in 

1868, published an algorithm for computing so-called ternary continued frac�

tions @Hp1, q1L; Hp2, q2L; … D whose elements Hpk, qkL are all ordered pairs of real 

numbers. More precisely, Jacobi’s algorithm associates to triples u1, v1, w1 Î R 

of real numbers a continued fraction of the form

v1

u1

,
w1

u1

� @Hp1, q1L; Hp2, q2L; Hp3, q3L; … D

whose nth convergents HBn � An, Cn � AnL satisfy the four-term recurrence relations

An � qn An-1 + pn An-2 + An-3,

Bn � qn Bn-1 + pn Bn-2 + Bn-3,

Cn � qn Cn-1 + pn Cn-2 + Cn-3,

where un+1 � vn - pn un, vn+1 � wn - qn un, wn+1 � un, pn � dvn �unt, and 

qn � dwn �unt. The upshot of Jacobi’s method is that it possesses many obvious 

properties analogous to the case of standard continued fraction representations 

of real numbers. On the other hand, Jacobi’s algorithm left much to be desired, 

most notably the fact that many observable patterns were largely unprovable at 

the time.

Since then, many different, largely more general notions of multidimensional 

continued fractions have been devised. One of the more well-known of these is 

due to Szerkeres, who devised an algorithm whereby sequences @b1, b2, … D of 

positive integers called continued k-fractions are associated with k-tuples 

HΑ1, Α2, … , ΑkL of real numbers via a rather in-depth set theoretic construction. 

Like Jacobi’s, Szerkeres’ algorithm yields a highly-analogous continued fraction 

theory. For example, Cusick’s exposition on the Szerkeres algorithm illustrates 

the process of defining sets of integer k-tuples, respectively Hk + 1L-tuples

AHn, jL � IAH1L Hn, jL, … , A
HkL Hn, jLM,

respectively

HB Hn, 0L, B Hn, 1L, … , B Hn, kLL,

manipulations of which produce nth approximations Pn �Qn � AHsn, 0L � BHsn, 0L 
for the k-fraction @b1, b2, … D of HΑ1, Α2, … , ΑkL which satisfy the identity

lim
n®¥

A
HiLHsn, 0L

BHsn, 0L
� Αi

for each i � 1, 2, … , k where, here, sn � Ú
k�1
n

bk, n � 1, 2, 3, … . This identity is 

the multidimensional analogue of the fact that limn®¥ An � Bn � Α for real one-

dimensional continued fractions Ξ with nth convergents Ξn � An � Bn. More 

details of this particular construction can be found in Cusick and its references.

Still another popular exposition is due to Schweiger, who approaches the 

construction via matrices rather than sequences. In particular, Schweiger 

defines a fibered system HB, TL to be a set B and a mapping T : B ® B with the 

property that one can partition B into sets 8BHiL : i Î I< with the property that 

T BHiL is injective for all i Î I. Here, I is an indexing set which is as most count�

ably infinite. Under this construction, HB, TL is said to be a multidimensional 

continued fraction (also called piecewise fractional linear) provided that B Î R
n 

for some n and that for every “digit” k Î I, there exists an invertible matrix

Α � Α HkL � IIAi jMM Î G L Hn + 1, ZL,

0 £ i, j £ n, such that

yi � HT xLi �
Ai 0 + Ú

i�1

n

Ai j x j

A00 + Ú
j�1

n

A0 j x j

for every x Î B HkL Ì R
n.

Other definitions of various depths and contexts can be found throughout the 

literature. A purely geometrical definition can be found in Karpenkov whose 

motivation lies in the related work of Klein dating back to the late 19th century. 

A more technically sophisticated approach centered on linear algebra and 

functional analysis can be found in Khanin et al. Functional multidimensional 

continued fractions, including branched continued fractions, are discussed in 

the thesis of Aryal, who also examines convergence of multidimensional contin�

ued fractions and the relationships between such fractions and so-called multi�

ple power series. Though apparently rare, a small portion of the literature 

compares various multidimensional fraction constructions, e.g., Schweiger, who 

examines his construction and its properties relative to the constructions of 

Jacobi and others. For other similar resources, see the introduction of 

Karpenkov as well as its references.

NachreinerGuentherDeterminantFormulas
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and Ak � Bk the sequence of its convergents.

Then the following explicit form for the numerators and denominators of the 

convergents holds:

An � det

b0 -1 0 … 0 0 0

a1 b1 -1 … 0 0 0

0 a2 b2 … 0 0 0

» » » ¸ » » »

0 0 0 … bn-2 -1 0

0 0 0 … an-1 bn-1 -1

0 0 0 … 0 an bn

Bn � det

b1 -1 0 … 0 0 0

a2 b2 -1 … 0 0 0

0 a3 b3 … 0 0 0

» » » ¸ » » »

0 0 0 … bn-2 -1 0

0 0 0 … an-1 bn-1 -1

0 0 0 … 0 an bn

.

NearestIntegerDistanceExceptionalLimit

There exist irrational numbers Ξ with regular continued fraction expansion

Ξ � b0 + K
j=1

¥ 1

b j

and An � Bn the sequence of its convergents such that Β � m Α + n for all 

m, n Î Z
+

lim
n®¥

minHd Β Bnt, ` Β BnpL � 0.

NearestIntegerDistanceLimit
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Let Ξ be an irrational number with regular continued fraction expansion

Ξ � b0 + K
j=1

¥ 1

b j

with bounded b j Î Z
+ and An � Bn the sequence of its convergents. Let Β be an 

irrational number. Then

lim
n®¥

minHd Β Bnt, ` Β BnpL � 0

if and only if Β � m Α + n with m, n Î Z.

NearestIntegerFractionConvergenceRate

Let Α be a real, Ξ be the regular continued fraction of Α with convergents pn �qn, 

and Ψ be the nearest integer continued fraction of Α with convergents An � Bn.  

Let kn be integers where

An

Bn

�
pkn

qkn

.

Then for almost all Α,

lim
n®¥

n

kn

�
lnHΦL

lnH2L
.

NondecreasingExponentCaseOfLeightonConjecture

Let Ξ be a C-fraction,

Ξ � K
n=1

¥ an z
Αn

1
,

D be the unit disk, and B be the domain boundary set of D.  Then given an ¹ 0, 

Αn Î Z
+,

lim
n®¥

Αn � ¥

lim
n®¥

 an¤1�Αn � 1

"n³1 â
i=1

n

H-1L-i+n
Αi ³ 0,

it follows that Ξ converges in D to a meromorphic function and that B is the 

natural meromorphic boundary.

NumeratorDenominatorDerivativeRelation
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and pk �qk the sequence of its convergents. Then the 

following relation holds:

¶ pN

¶b0

� qN.

NumeratorDenominatorSymmetry

Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction and A � Bk the sequence of its convergents.

Let

Ζ � bN + K
k=1

N aN-k+1

bN-k

be a derived continued fraction and Pk �Qk the sequence of its convergents.

Then the following identity holds for the sequences of numerators of the two 

convergents:

AN � PN.

NuttallTheorem
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Let e j be complex numbers,

HHzL �
1

Û
i=1

2 p

Hz - eiL

be a meromorphic function, R be the hyperelliptic Riemann surface set of HHzL 
of genus g � p - 1, Π be the hyperelliptic Riemann surface projection set of R, 

Π1 be the hyperelliptic Riemann surface first sheet set of R, Π2 be the hyperellip�

tic Riemann surface second sheet set of R, wHzL be a meromorphic function 

where

wHzL2 � HHzL.

Let dGHzL be the Abelian differential of the third kind set of R,

uHzL � Re à
e1

z

dGHzL

be the harmonic function set with domain R,

G � 8z uHzL � 0<,

S be the projection of G composed of arcs S j from e2 j-1 to e2 j, S
+H jL be the 

hyperelliptic Riemann surface arc above set of S j, w
+HzL be a meromorphic 

function

"xÎS
+H jL w

+HΠ HxLL � wHxL,

f HzL �
1

2 Π ä
à

ΖÎS

ΡHΖL

HΖ - zL w
+HzL

â Ζ

be a meromorphic function,

D � Π H8z : uHzL > 0<L

be the domain of f HzL, ΡHxL be a holomorphic function where "xÎS ΡHxL ¹ 0, YnHzL 

be a meromorphic function whose domain is R - G, and whose divisor is 

Úi=1

g
zi + Π2H¥L Hn - gL - Π1H¥L n and

"ΖÎG ΡHΖL Π1HYnHΖLL � Π2HYnHΖLL, and

fnHzL be the Padé  approximants diagonal set for f  at 0.  Then

f HzL - fnHzL �
H1 + oH1LL Û

j=1

g

Iz - z jM

HHzL YnHzL2

.

OddContraction
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Let Ξ � b0 + KHam �bmL be a generalized continued fraction with nth approxi�

mant Ξn � An � Bn. A continued fraction Ζ � d0 + KHcm �dmL with nth approximant 

Ζn � Cn � Dn is said to be an even contraction of Ξ if and only if Ζn � Ξ2 n+1 for 

n � 0, 1, 2, … . Note that Ξ has an even contraction if and only if b2 n+1 ¹ 0 for 

all positive integers n.

OstrowskiNumberSystemIntegers

Let Ξ be the positive irrational number 0 < Ξ < 1 with regular continued fraction 

expansion

Ξ � K
j=1

¥ 1

b j

and convergents An � Bn.

For every irrational number Ξ with 0 < Ξ < 1, any integer n can be uniquely 

written as

N � â
k=1

m

ck Bk-1,

where

0 £ c1 £ b1 - 1

0 £ c1 £ b1 for k ³ 2

ck � 0 if ck+1 � bk+1.

OstrowskiNumberSystemReals
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Let Ξ be the positive irrational number 0 < Ξ < 1 with regular continued fraction 

expansion

Ξ � K
j=1

¥ 1

b j

and convergents An � Bn.

Let

Θn � Ξ Bn - An.

For every irrational number Ξ with 0 < Ξ < 1, any real x with 0 < x < 1 can be 

uniquely written as

x � â
k=1

m

ck  Θk-1¤,

where

0 £ c1 £ b1 for k ³ 1

ck � 0 if ck+1 � bk+1

and ck ¹ bk for infinitely many ck.

PadeApproximant
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Given a function f  with associated Taylor series A HxL � Új�0
¥

a j x
j, the Padé  

approximants to f  are a collection of rational approximations devised to pro�

vide accurate estimations of f  by way of matching A as long as is mathemati�

cally feasible and deviating onward in order to avoid perpetuation of error. In 

particular, the @L, MD Padé  approximant to f  is defined to be the rational 

function PL HxL �QM HxL, where PL HxL � p0 + p1 x + º + pL x
L and 

QM HxL � q0 + q1 x + º + qM x
M are polynomials of degree at most L and M, 

respectively, which satisfies the asymptotic relation

A HxL - PL HxL �QM HxL � O IxL+M+1M.

This asymptotic relation uniquely determines the coefficients pi and q j, 

i � 0, 1, … , L, j � 0, 1, … , M, the association of which can be written out 

algorithmically as follows: Define an º 0 if n < 0, q j º 0 if j > M, and

a0 � p0

a1 + a0 q1 � p1

a2 + a1 q1 + a0 q2 � p2

» »

aL + aL-1 q1 + º + a0 qL � pL

aL+1 + aL q1 + º + aL-M+1 qM � 0

» »

aL+M + aL+M-1 q1 + º + aL qM � 0.

Note that the above procedure is what remains when the normalization assump�

tion QM H0L � 1 is made; this is assumed in several modern contexts though is 

often omitted in classical literature on the subject.

PadeApproximantColumn
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Given a function f HzL, the kth column of Padé  approximants of f  are the Padé  

approximants of f  of the form

p0HzL

qkHzL
,

p1HzL

qkHzL
,

p2HzL

qkHzL
, …

where, for integers L, M ³ 0,

pLHzL

qMHzL
�

p0 + p1 z + º + pL z
L

q0 + q1 z + º + qM z
M

denotes the @L, MD Padé  approximant of f . The use of the term “column” is 

suggestive of the fact that the collection 8@ j, kD<, j � 0, 1, 2, … , forms the kth 

column of the Padé  Table corresponding to f . Worth noting, too, is that the 

first column of Padé  approximants of f  consists precisely of the partial sums of 

its Taylor series expansion.

PadeApproximantDenominator

Given a function f HzL, the denominators of the Padé  approximants of f  are the 

polynomials q0 HzL, q1 HzL, q2 HzL, …  where, for integers L, M ³ 0,

pLHzL

qMHzL
�

p0 + p1 z + º + pL z
L

q0 + q1 z + º + qM z
M

denotes the @L, MD Padé  approximant of f .

PadeApproximantDiagonal

Given a function f HzL, the Padé  diagonal approximants are the Padé  approxi�

mants of f  of the form

p0HzL

q0HzL
,

p1HzL

q1HzL
,

p2HzL

q2HzL
, …

where for N a positive integer,

pNHzL

qNHzL
�

p0 + p1 z + º + pN z
N

q0 + q1 z + º + qN z
N

denotes the @N, ND Padé  approximant of f . The use of the term “diagonal” is 

suggestive of the fact that the collection of all @N, ND Padé  approximants of f , 

N � 0, 1, 2, … , forms the diagonal of the Padé  table corresponding to f .

PadeApproximantNumerator
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PadeApproximantNumerator

Given a function f HzL, the numerators of the Padé  approximants of f  are the 

polynomials p0 HzL, p1 HzL, p2 HzL, …  where, for integers L, M ³ 0,

pLHzL

qMHzL
�

p0 + p1 z + º + pL z
L

q0 + q1 z + º + qM z
M

denotes the @L, MD Padé  approximant of f .

PadeApproximantRow

Given a function f HzL, the jth row of Padé  approximants of f  are the Padé  

approximants of f  of the form

p jHzL

q0HzL
,

p jHzL

q1HzL
,

p jHzL

q2HzL
, …

where, for integers L, M ³ 0,

pLHzL

qMHzL
�

p0 + p1 z + º + pL z
L

q0 + q1 z + º + qM z
M

denotes the @L, MD Padé  approximant of f . The use of the term “row” is sugges�

tive of the fact that the collection 8@ j, kD<, k � 0, 1, 2, … , forms the jth row of 

the Padé  Table corresponding to f .

PadeConjecture

Let f HzL be a complex-valued function defined on some domain G Ì C for which

8z Î C :  z¤ £ R for some R > 1< Ì G

and suppose that, with the exception of M poles z1, z2, … , zM within the disc 

 z¤ £ 1 and except for at the point z � 1 where f  is assumed continuous only 

when points  z¤ £ 1 are considered, f  is holomorphic on  z¤ £ 1 with correspond�

ing power series FHzL. Under these hypotheses, a subsequence of the collection

p0HzL

q0HzL
,

p1HzL

q1HzL
,

p2HzL

q2HzL
, …

of @N, ND Padé  approximants to f  converges uniformly to f  on the set W as 

N ® ¥. Here, W denotes the set formed by removing from the region  z¤ £ 1 

arbitrarily small open neighborhoods centered at each pole zm.

PadeTable
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PadeTable

Given a function f HzL with @L, MD Padé  approximant

pLHzL

qMHzL
�

p0 + p1 z + º + pL z
L

q0 + q1 z + º + qM z
M,

L, M � 0, 1, 2, … , the so-called Padé  table is a rectangular matrix consisting of 

L rows and M columns whose HL, ML entry is identically equal to @L, MD. In 

some literature, the Padé  table used is the transpose of the table described 

here, i.e., it is the M � L matrix whose HM, LL entry is the @M, LD approximant of 

the function f .

PalindromicRegularContinuedFraction

Let p > q > 1 and let

p

q

� b0 + K
k=1

N 1

bk

be the corresponding regular continued fraction with bk Î Z
+. Then a necessary 

and sufficient condition for the existence of a palindromic expansion bN- j � b j 

for j � 0, 1, … , N is

p ý q
2

- 1

or

p ý q
2

+ 1.

PalindromicRegularContinuedFractionInfiniteRadicals
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Let an be a palindromic string set and m be its string length.  For any d be a 

square free integer, let

x1 � d

be a quadratic irrational,

Ξ1 � K
n=1

¥ 1

b
n

H1L

the regular continued fraction of x1, and l1 the regular continued fraction 

period of Ξ1.  Also let

x2 �
1

2
K d + 1O

be a quadratic irrational,

Ξ2 � K
n=1

¥ 1

b
n

H2L

the regular continued fraction of x2, bn and l2 the regular continued fraction 

period of Ξ2.  Let X be integers d such that either l1 � m and b1 � a or l2 � m 

and b2 � a. Then X is infinite.

ParabolaTheorem
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There are a number of results of varying generalities which are known as “the 

parabola theorem,” and while most are equivalent (or analogous, in the case of 

theorems in more general settings), perhaps the most geometrically-intuitive 

version is the one given by Voll and Lorentzen and outlined below.

Suppose Α Î R is fixed and satisfies  Α¤ < Π �2 and define EΑ Í C
`
 to be the subsets

EΑ � a Î C :  a¤ - ReIa ã
-2 ä aM £

1

2
cos

2HΑL .

A generalized continued fraction Ξ � KHan �1L for which an Î EΑ, n � 0, 1, 2, … , 

converges to a finite value x Î C provided that S HΞL � ¥ where here, S HΞL � S 

denotes the so-called Stern-Stolz series

S � â
n�1

¥

ä
k�1

n

a
k

H-1Ln+k-1

associated with Ξ. Moreover, if S < ¥, then 8 f2 n<, 8 f2 n+1< converge absolutely to 

distinct finite values and 9S2 n

Ξ
=, 9S2 n+1

Ξ
= converge generally to these values. 

Here, fn � Sn

Ξ
H0L and Sn

Ξ
 is the Möbius transformation associated to Ξ defined for 

all w Î C by the approximant function

Sn

Ξ
HwL �

a1

1 +
a2

1+
a3

¸+
an

1+w

.

While being somewhat simpler notationally, this particular statement seems at 

first glance to have lost the “parabola” aspect of the theorem; in reality, how�

ever, the region EΑ above has a geometric boundary ¶ EΑ which is precisely a 

parabola in the complex plane.

Worth noting is that, because of its rich history, there are a variety of naming 

conventions regarding this theorem resulting from contributions made by a 

variety of authors. Indeed, it is not uncommon to see any or all of the names 

Gragg, Warner, Scott, Paydon, or Wall attached as prefixes. For classical 

sources stating and proving results related hereto, see works by Paydon, Scott, 

and Wall from the 1940s. In addition, many sources such as Gragg & Warner, 

Lorentzen, and Hovstad address various aspects of this theorem from more 

modern viewpoints while still others, e.g., Short, Voll, and Lorentzen & Waade�

land, provide geometric interpretations of the theorem and prove theorems 

derived therefrom.

ParabolaTheoremEstimation
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Let

Ξ � K
k=1

¥ ak

1

be a continued fraction with ak ¹ 0 and An � Bn the sequence of its convergents. 

Let

 ak¤ - ReIak ã
-2 ä ΑM £

cos2HΑL

2

where -Π �2 < Α < Π �2. Then for all n ³ 1

2 ReIBn Bn ã
ä ΑM -  Bn-1¤2 ³

2

cosHΑL
 Bn-1¤ I Bn-1¤ - ¡Bn-1 ã

-ä Α
- Bn-2 cosHΑL¥M.

ParabolicConvergenceTheorem1

Let PΑ be a certain parabola in the complex plane with focus H0, 0L going 

through z � -1 �4 characterized by the fact that bn Î PΑ if and only if 

 bn¤ - ReIbn ã-2 ä ΑM £ cos2HΑL �2, Α Î H-Π �2, Π �2L. Let Ξ be a continued fraction of 

the form Ξ � @0; b1, b2, … D. If bn Î P0 (that is, bn Î PΑ and Α � 0) for all 

n � 1, 2, …  and if at least one of the series

â
Ν�1

¥
b2 b4 º b2 Ν

b3 b5 º b2 Ν+1

, â
Ν�2

¥
b3 b5 ºb2 Ν-1

b4 b6 º b2 Ν

diverges, then Ξ converges to some complex number b.

ParabolicConvergenceTheorem2

Let PΑ be a certain parabola in the complex plane with focus H0, 0L going 

through z � -1 �4 characterized by the fact that bn Î PΑ if and only if 

 bn¤ - ReIbn ã-2 ä ΑM £ cos2HΑL �2, Α Î H-Π �2, Π �2L. Let Ξ be a continued fraction of 

the form Ξ � @0; b1, b2, … D. If for all n � 1, 2, … , bn Î K where K is a closed 

region contained in the interior of PΑ and if at least one of the series

â
Ν�1

¥
b2 b4 º b2 Ν

b3 b5 º b2 Ν+1

, â
Ν�2

¥
b3 b5 ºb2 Ν-1

b4 b6 º b2 Ν

diverges, then Ξ converges to some complex number b.

ParabolicConvergenceTheorem3
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Let PΑ be a certain parabola in the complex plane with focus H0, 0L going 

through z � -1 �4 characterized by the fact that bn Î PΑ if and only if 

 bn¤ - ReIbn ã-2 ä ΑM £ cos2HΑL �2, Α Î H-Π �2, Π �2L. Let Ξ be a continued fraction of 

the form Ξ � @0; b1, b2, … D. If for all n � 1, 2, … , bn Î K where K is a closed 

region contained in the interior of PΑ and if there exists a real number M ³ 0 for 

which  bn¤ < M for all n, then Ξ converges to some complex number b.

ParabolicConvergenceTheorem4

Let PΑ be a certain parabola in the complex plane with focus H0, 0L going 

through z � -1 �4 characterized by the fact that bn Î PΑ if and only if 

 bn¤ - ReIbn ã-2 ä ΑM £ cos2HΑL �2, Α Î H-Π �2, Π �2L, and for a positive number 

d £ 1 �2, define C0HΑ, dL, C1HΑ, dL to be regions in the complex plane so that 

z � x + ä y Î C0 HΑ, dL if and only if

x tan Α - d £ y £ x tan Α + d

and z Î C1 HΑ, dL if and only if

x tanHΑL - H1 - dL £ y £ x tanHΑL + H1 - dL.

Let Ξ be a continued fraction of the form Ξ � @0; b1, b2, … D. If for all 

n � 1, 2, … , bn Î PΑ and if at least one of the series

â
Ν�1

¥
b2 b4 º b2 Ν

b3 b5 º b2 Ν+1

, â
Ν�2

¥
b3 b5 ºb2 Ν-1

b4 b6 º b2 Ν

diverges, then Ξ converges to some complex number b provided that for all 

n � 1, 2, … , b2 n lies in one of the regions C0 HΑ, dL, C1 HΑ, dL and b2 n-1 lies in 

the other.

ParabolicConvergenceTheorem5

Let g1, g2, …  be a sequence of constants with 0 < gn < 1 for all n, let 

Α Î H-Π �2, Π �2L, and let M, Ε be constants with Ε < 1 �2. Then the continued 

fraction Ξ � KHbn �1L � @0; b1, b2, … D with elements of the form

bn � ã
2 ä Α

gnH1 - gn+1L cos
2HΑL Hun + ä vnL, v

n

2
£ 4 un + 4,

converges to a complex number b provided that  bn¤ < M, Ε < gn < 1 - Ε, and

â
k�1

¥

ä
Ν�1

k 1

gΝ+1 - 1

diverges.

ParabolicConvergenceTheorem6

210     Results.nb



ParabolicConvergenceTheorem6

Let -Π �2 < Α < Π �2 and let Ξ � KHbn �1L � @0; b1, b2, … D be a continued fraction 

whose elements satisfy  bn¤ - ReIbn ã-2 ä ΑM £ cos2HΑL �2 for n � 1, 2, … . If there 

exists a real number M > 0 for which  bn¤ < M for all n, then Ξ converges. More�

over, if the partial quotients bn are functions of any number of variables, the 

convergence of Ξ to a complex-valued function bHzL is uniform provided that the 

ranges of the functions bnHzL satisfy the aforementioned criteria.

ParabolicConvergenceTheorem7

Let -Π �2 < Α < Π �2 and let Ξ � KHbn �1L � @0; b1, b2, … D be a continued fraction 

whose elements satisfy  bn¤ - ReIbn ã-2 ä ΑM £ cos2HΑL �2 for n � 1, 2, … . If the sum

â
n�2

¥ 1

 bn¤ n

diverges, then Ξ converges to a complex number b.

ParabolicConvergenceTheorem8

Let -Π �2 < Α < Π �2 and let PΑ,n be a sequence of parabolas characterized by the 

fact that bn Î PΑ,n if and only if, for n � 1, 2, … ,

 bn¤ - ReIbn ã
-2 ä ΑM £

2 n
2

4 n
2 - 1

cos
2HΑL.

If Ξ � KHbn �1L � @0; b1, b2, … D is a continued fraction with bn Î PΑ,n for all n, 

then Ξ converges to a complex number b provided that the sum

â
n�1

¥ 1

 bn¤ n lnHnL

diverges.

ParametricCurveTrace

Given a parametrized curve Γ : Ha, bL ® R
2, the trace of Γ is the image set in R2 

which is generated by Γ over a given interval. For such a curve Γ, its trace is 

sometimes denoted 8Γ<.

PartialDenominatorsFromApproximationCoefficientsRecurs

ion
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PartialDenominatorsFromApproximationCoefficientsRecurs

ion

Let Ξ be the the regular continued fraction

Ξ � b0 + K
j=1

M 1

b j

with M £ ¥, convergents An � Bn and approximation coefficients

Θn � B
n

2
Ξ -

An

Bn

.

Then the partial denominators bn can be recovered from the approximation 

coefficients through

bn+1 �
1 - 4 Θn-1 Θn + 1

2 Θn

.

PellEquationSolution

The Pell equation x2 - d y
2 � 1 for nonnegative integers x, y, and d, d Ï Z 

has infinitely many solutions. Let An, Bn be the numerators and denominators 

of the convergents of

d � b0 + K
k=1

¥ 1

bk

and Λ be the length of the period. Then the solutions of the Pell equation are 

given by

xn � An k-1

yn � Bn k-1,

where n Î Z
+ for even k and n �2 Î Z

+ for odd k.

PellLikeEquationSolution
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Let d be a squarefree integer, c be an integer where  c¤ <  d¤ , x and y are 

integers,

r �
x

y

be a rational number,

z � d

be a quadratic irrational, Ξ be the regular continued fraction of z, An be the 

convergent numerator of Ξ, and Bn be the convergent denominator of Ξ.  Given

gcdHx, yL � 1

and

x
2

- d y
2 � c

then

$n Hx � An ì y � BnL.

Period1ContinuedFractions

Let d be a squarefree integer,

x � d

be a quadratic irrational, Ξ be the regular continued fraction of x, l be the 

regular continued fraction period of Ξ, and t be an integer.  Given l � 1, it 

follows that

$t d � 1 + t
2
.

Period2ContinuedFractions

Let d be a squarefree integer,

x � d

be a quadratic irrational, Ξ be the regular continued fraction of x, l be the 

regular continued fraction period of Ξ, k be an integer, and X be a natural 

number. Given l � 2, it follows that

$k,X Id � 2 k + k
2

X
2 ê d � k + k

2
X

2M.

Period3ContinuedFractions
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Let d be a squarefree integer,

x � d

be a quadratic irrational, Ξ be the regular continued fraction of x, l be the 

regular continued fraction period of Ξ, k be an integer, and X be a natural 

number.  Given l � 3, it follows that

$k,X d � 1 + k
2

+ 2 k I3 + 4 k
2M X + I1 + 4 k

2M X
2
.

Period4ContinuedFractions

Let d be a squarefree integer,

x � d

be a quadratic irrational,

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of x, bn be the partial denominator of Ξ, l be 

the regular continued fraction period of Ξ, and m be a integer.  Given 

l � 4, it follows that

b2 mod 2 � 1 implies b1 mod 2 � 1

and

$m 2 b0 � b2 H-1 - b1 b2L + m I2 b1 + b1
2

b2M and d � b0
2

- b2
2

+ m H1 + b1 b2L.

PeriodicContinuedFractionCriterionForPolynomialPellEquati

on

Let DHtL be a complex polynomial that is not a square.  Then the existence of

Ξ � K
n=1

¥ 1

anHtL

as a regular continued fraction for DHtL , with a constant period h where

degHanHtLL > 0 ì ah � 2 a0 ì ai � ah-i

is equivalent to the existence of polynomials XHtL and YHtL of positive degree 

such that

XHtL2
- DHtL YHtL2 � 1.

PeriodicPointsOfDerrickEidswickContinuedFraction
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Let Ξ be a generalized continued fraction

Ξ � K
k=1

¥ -a

2
.

Then the value a is a periodic point continued fraction for n if a - 1 is a zero of

Pn � â
k=0

dHn-1L�2t

H-1Lk
n

2 k + 1
x

k
.

PeriodLengthBoundForContinuedFractionsOfSchinzelSleepe

rs

Let A, B, C be integers where

A > 0 í I4 gcdIA2
, BM2M mod IB2

- A
2

CM � 0

and set

DHXL � A
2

X
2

+ 2 B X + C

be a Schinzel sleeper.  Set

A
` �

A

gcdHA, BL

D � B
2

- A
2

C

Define D1, D2, and D4 by

 D¤ � D1 D2
2

D4
4
,

where D1 and D2 are squarefree integers, and set

D
` � D2 D4

2
.

Let Ξ be the regular continued fraction of DHXL , and lp be the regular contin�

ued fraction period of Ξ.  Then

lp £

3
lnJ 5 A

`
D
`

N

lnHΦL
D
`

D
`

mod 2 � 0

2
lnJ 5 A

`
D
`

N

lnHΦL
D
`

D
`

mod 2 � 1

.

PeriodsRegularContinuedFractionsOfConjugateQuadraticIrr

ationals
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Let Ξ be an irrational solution of a quadratic equation with rational coefficients. 

Then the continued fraction expansion of Ξ has the form

Ξ � b0 + K
k=1

¥ 1

bk for k < k0

bk0+Hk-k0L mod m for k ³ k0

.

The conjugate of Ξ has a continued fraction expansion

Η � c0 + K
j=1

¥ 1

ck for j < j0

ck0+Hk-k0L mod m for j ³ j0

,

where

ck0+Hk-k0L mod m � bm-Hk0+Hk-k0L mod mL.

PiContinuedFractionIrrational

Let

x �
Π

4

and

Ξ � K
n=1

¥

x for n � 1

-x
2 otherwise

-1 + 2 n

be a generalized continued fraction.  Then Ξ � 1 and x is an irrational number.

PincherleTheorem

Let

Ξ � K
n=1

¥ an

bn

be a generalized continued fraction.  Then a minimal three-term recurrence 

solution Xn exists if and only if Ξ converges, and, if such a solution Xnexists,

Ξ � -X0 � X-1.

PippengerContinuedFractionValue

216     Results.nb



The finite Pippenger continued fraction

Ξ � 1 +
1

-1 + t1 1 +
1

-1+t2 1+
1

-1+t3 1+
º

¸

-1+tn

has the value

Ξ �
Û

k=1

n

tk

Ú
j=1

n

H-1L j+n Û
k=1

j

tk

.

PolygonalPolesInPadeApproximants

Let

D � C
`

- @-1, 1D

be a domain, r be a complex rational function, Σ be a Borel measure set, Σ
` HzL 

be the Markov function of Σ,

f � rHzL + Σ
` HzL

be a meromorphic function, V be the poles of f  in D, v be a pole, Μ be the pole 

multiplicity of v, ΡHxL be a holomorphic function where "xÎ@-1,1D ΡHxL ¹ 0,

fn be the Padé  approximants diagonal set at ¥, U be a complex neighborhood 

of v, and Vn be the poles of fn in U.  Then given

"xÎ@-1,1D DHΣLHxL �
ΡHxL

1 - x
2

Μ ³ 3, then there exists N such that for all n > N, Vn are simple poles and are 

asymptotically configured as a regular polygon.

PolylogarithmContinuedFractionValue
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A generalized continued fraction for the polylogarithm function on a single-

valued branch on C � H-¥, -1 �4L is given by

-LinH-zL � K
k=1

¥ an,k z

1
,

where, letting i and j range from 1 to m

AHr, n, mL � det
H-1Li+ j+r

Hr + i + j - 1Ln

AHr, n, 0L � 1

a1 � 1

a2 m � -
AH0, m - 1, nL AH1, m, nL

AH0, m, nL AH1, m - 1, nL

a2 m+1 � -
AH0, m + 1, nL AH1, m - 1, nL

AH0, m, nL AH1, m, nL
.

PorterConstant

Porter’s constant is a constant CP appearing in asymptotic formulas for the 

efficiency of the Euclidean algorithm and also related to continued fractions.  It 

can be written in closed form as

CP �
6 lnH2L IΠ2 H4 ý - 2 + lnH8LL - 24 Ζ¢H2LM

Π4
+

1

2

where Ζ¢HzL is the derivative of the Riemann zeta function, or

CP �
6 lnH2L H48 lnHAL - 2 - lnH2L - 4 lnHΠLL

Π2
-

1

2
.

The constant has numerical value

CP � 1.4670780794339754728977984847072299534499033224148 … .

Knuth has suggested that CP be called the Lochs-Porter constant in honor of 

Lochs, who investigated the related constant

3

4
-

3 lnH2L

Π2
3 lnH2L -

24 Ζ¢ H2L

Π2
+ 4 ý - 2 -

6 lnH2L

Π2

6

Π2
Ζ

¢ H2L -
1

2
�

0.2173242870 …

in a significantly earlier but little-known work on contnued fractions.

PositiveAlgebraicNumbersCanBeRepresentedAsPeriodicBra

nchedFractionsWithNaturalElements
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Any positive algebraic number can be represented as a periodic branched 

fraction with natural elements.

PositiveProportionOfConvergentDenominatorsForConstrai

nedPartialQuotientsBoundedHausdorffDimension

Let A be a set of natural numbers, CA be regular continued fractions whose 

partial quotients Ì A, RA be finite regular continued fractions whose partial 

quotients Ì A, DAHNL be denominators d of RA such that d £ N, f HNL � ð DAHNL, 

and H be the Hausdorff dimension. Then given HHCAL >
307

312
, it follows that

f HNL � OHNL.

PositiveProportionOfConvergentDenominatorsForContinu

edFractionsWithBoundedHausdorffDimension

Let A be a set of natural numbers, CA be regular continued fractions whose 

partial quotients Ì A, RA be finite regular continued fractions whose partial 

quotients Ì A, DAHNL be denominators d of RA such that d £ N, f HNL � ð DAHNL, 

and H be the Hausdorff dimension. Then given HHCAL > 1 + I-27 + 633 M �16,

f HNL � OHNL.

PositiveProportionOfConvergentDenominatorsForPartialQ

uotientDenominatorsBoundedBySeven

Let A be the natural numbers £ 7, CA be regular continued fractions whose 

partial quotients Ì A, RA be finite regular continued fractions whose partial 

quotients Ì A, DAHNL be denominators d of RA such that d £ N, f HNL � ð DAHNL, 

and H be the Hausdorff dimension.  Then

f HNL � OHNL.

PositiveRealFunction
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Let f  be a map from the right half-plane of C to itself which maps the real axis 

onto itself. Then f  is said to be positive real if it is single-valued and analytic in 

the open right half plane and if the real part ReH f HzLL is positive for all z in the 

open right half plane.

PringsheimContinuedFractionConvergence

Let

Ξ � K
n=1

¥ an

1

be a generalized continued fraction and rn be real numbers.  Given 

$rn
H0 < rn < 1 ì  ai¤ < H1 - r-1+iL riL, then Ξ converges.

ProbabilityTheoremForVarianceOfContinuedFractionCoeffi

cients

Let Ξx be the continued fraction representation of an element x Î H0, 1L where 

Ξx has the form Ξx � A0; b1
HxL

, b2
HxL

, … E. Then, for fixed K, the set of all x in H0, 1L 

for which the average of the first K coefficients b1
HxL

, b2
HxL

, … , BK

HxL
 differs from 

log
2

HKL by more than a prescribed value Ε > 0 is a set of measure zero as K ® ¥. 

Symbolically, for arbtirary Ε > 0 and for x Î H0, 1L a uniformly distributed 

random variable,

lim
K®¥

Pr
xÎH0,1L

Ú
n�1

¥

b
n

HxL � K

log
2

HKL
- 1 > Ε � 0.

Here Pr
xÎA

8 f HxL< denotes the probability over all random variables x in A that the 

statement f HxL holds. Moreover, this result cannot be strengthened to say that 

HÚn�1
¥

an � KL � log
2

HKL ® 1 for almost all x in H0, 1L.

ProductToContinuedFraction
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Let ck ¹ 0 for all integer k ³ 0 and

Ξ � ä
k=0

N

H1 + ckL.

Then the continued fraction

Η � 1 + c0 + K
k=1

N

H1 + c0L c1 for k � 1

-H1 + ck-1L ck

ck-1

for k > 1

1 for k � 1

1 + H1 + ck-1L ck

ck-1

for k > 1

has the property that for all integers m ³ 0 the following identities hold:

ä
k=0

m

H1 + ckL � 1 + c0 + K
k=1

m

H1 + c0L c1 for k � 1

-H1 + ck-1L ck

ck-1

for k > 1

1 for k � 1

1 + H1 + ck-1L ck

ck-1

for k > 1.

ProperlyEquivalent

Two complex numbers Ξ, Η Î C are called properly equivalent if there exists a 

properly equivalent unimodular map m with Η � m HΞL.

ProperlyUnimodularMap

A unimodular map m is called properly unimodular if detHmL Î 8±1<.

PropertiesOfDiscrepancy
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Let E Ì @0, 1, Ω � 8xn<
n�1
N  a sequence of real numbers and define AHE; N; ΩL so 

that

A HE; N; ΩL � ð 8n : 1 £ n £ N and fracHxnL Î E<,

where ð A denotes the number of elements of A for all sets A and fracHyL 

denotes the fractional part of the element y for all y.

Llet DN be the discrepancy associated to finite segments of Ω, i.e.,

DN HΩL � sup
0£Α< Β£1

AH@Α, ΒL; N; ΩL

N

- H Β - ΑL .

Then necessarily 1 � N £ DN £ 1 where DN � 1 � N if and only if 

8xn<
n�1
N � 8Hn - 1L � N<

n�1
N .

PropertiesOfStarDiscrepancy

Let E Ì @0, 1, Ω � 8xn<
n�1
N  a sequence of real numbers and define AHE; N; ΩL so 

that

A HE; N; ΩL � ð 8n : 1 £ n £ N and fracHxnL Î E<,

where ð A denotes the number of elements of A for all sets A and fracHyL 

denotes the fractional part of the element y for all y.

For an arbitrary sequence Ω � 8xn<
n�1
N  of real numbers with fractional parts 

fracHx1L, fracHx2L, … , fracHxNL ordered increasingly by magnitude, 

D
N

* £ DN £ 2 D
N

*  and 1 � H2 NL £ D
N

* £ 1. Here DN and D
N

*  denote the discrepancy 

and star discrepancy, respectively, associated with the finite segments of Ω and 

are defined to be

DN HΩL � sup
0£Α< Β£1

AH@Α, ΒL; N; ΩL

N

- H Β - ΑL

and

D
N

* � max
i�1,2,… ,N

max
i

N - HxiL
,

i - 1

N - HxiL
,

respectively. Moreover, the equality D
N

* � 1 � H2 NL holds if and only if 

xn � H2 n - 1L �2 N for n � 1, 2, … , N.

Property:ConvergeGenerally
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The generalized continued fraction Ξ � KHan �bnL converges generally to 

f Î C
` � C Ü 8¥< precisely when its associated Möbius transformation Sn HΞL � Sn 

converges generally. Here, Sn is defined for all w Î C by the approximant 

function

Sn HwL �
a1

b1 +
a2

b2+
a3

¸+
an

bn+w

and is said to converge generally to a constant Γ Î C
`
 if and only if there exists a 

sequence 9w
n

† = from C
`
 such that limn®¥ Sn HwnL � Γ whenever

lim
n®¥

inf
k³n

m Jwk, w
k

† N > 0

where m denotes Ahlfors’ “chordal metric.” One can easily show that conver�

gence in the general sense is an immediate consequence of convergence in the 

classical sense.

Property:LyapunovExponentExists

Let GHxL denote the Gauss map which is defined piecewise as

GHxL �
x for x � 0

x - dxt for x ¹ 0,

and let ΛHΓL denote the values of the Lyapunov exponents (if they exist) of G for 

Γ Î R an arbitrary real number. By the ergodicity of G, one can conclude that 

the Lyapunov exponent exists for the orbits under G of almost all (with respect 

to either Lebesgue or Gauss measure) Γ Î R. Moreover, the value ΛHΓL can be 

computed explicitly for elements Γ Î R whose G orbits do omit well-defined 

Lyapunov exponents and is precisely

ΛHΓL � -
2

lnH2L
à

0

1 lnHxL

1 + x

â {HxL �
Π2

6 lnH2L
,

where { denotes the Lebesgue measure on R. Despite this, the collection N of 

initial points Γ Î R for which ΛHΓL fails to exist is actually dense in R as, for 

example, Q Ì N.

PurelyPeriodicSequence

A sequence a1, a2, a3, …  is purely periodic if there exists a positive integer 

p Î Z
+ such that an+p � an for every positive integer n Î Z

+.

QuadraticIrrationalsAreBadlyApproximableNumbers
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QuadraticIrrationalsAreBadlyApproximableNumbers

Let Α be a quadratic irrational number where 0 £ Α £ 1 and Ξ be the regular 

continued fraction of Α.  Then Ξ is badly approximable.

QuadraticIrrationalsWithPeriodTwelve

Let d be a natural number where

d mod 4 � 3

and Ξ be the regular continued fraction of d , lHdL be the period of Ξ, and SHXL 
be natural numbers where d £ X and lHdL � 12.  Then

SHXL � OI X lnHXLM.

QueffelecTheorem

The continued fraction of a Thue-Morse sequence is transcendental.

QuinticBoundOnComputingTimeOfContinuedFractionsMet

hodForPolynomialRealRootIsolation

Let A be a continued fraction method with root bounds algorithm, p be the 

input polynomial of A, n be the polynomial degree of p, and tHAL be the comput�

ing time set of A.  Then there exists a constant c > 0 such that " n $ p such that 

tHAL ³ c n
5.

RadiusOfConvergenceForGSeriesAssociatedToRogersRama

nujanContinuedFraction
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Let Τ be an irrational number, define the modular nome by

q � ã
2 ä Π Τ

as the parameter of the Rogers Ramanujan continued fraction,

GqHzL � â
k=0

¥ q
k

2

z
k

Hq; qLm

be its associated holomorphic function, and Rq be the holomorphic radius set of 

GqHzL. Then

Rq � lim inf
n®¥

 1 - q
n¤1�n

.

RamanujanSelfReciprocalContinuedFraction

The continued fraction

ΞHxL � 1 + K
k=1

¥ k
2

x

with the closed form value

ΞHxL �
1

2
Ψ

H0L
x + 3

4
- Ψ

H0L
x + 1

4

for ReHxL > -1 fulfills the self-reciprocal identity

ΞHxL � à
0

¥

ΞHsL sin
x Π s

2
â s.

RationalsInTheFareyProcess

Every rational number p �q in lowest terms with 0 < p �q < 1 appears at some 

stage of the Farey process provided that the process begins with the numbers 

0 �1 and 1 �1.

ReddmannTheorem
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Given a real number Ξ with finite regular continued fraction expansion

Ξ � 0 + K
k=1

N 1

bk

.

and finite base-b expansion H0. d1 d2 º dNb, the terms of the two expansions are 

equal (bn � dn for n � 1, 2, … , N) for N £ 2 when and only when:

a) For N � 1, Ξ � 1 �b1 and b � b1
2.

b) For N � 2, HΞ � 4 �9 and b � 6) or (Ξ � 2 100 332

13 051 463 049
 and b � 38 614 134).

RegularChain

A regular chain is an infinite product T0 T1 º Tn º where T0 � V1
b0, b0 Î Z, 

T1 ¹ V1, and

Tn Î 9V j, E j, C= for det HT0 T1 º Tn-1L � ±1

Tn Î 9V j, C= for det HT0 T1 º Tn-1L � ± ä

for n ³ 1 such that no n0 Î Z
+, j Î 81, 2, 3< exist for which Tn � V j for all n ³ n0. 

The matrices used here are defined as follows:

V1 � 1 ä

0 1
, V2 � 1 0

-ä 1
, V3 � 1 - ä ä

-ä ä + 1

E1 � 1 0

1 - ä ä
, E2 � 1 ä - 1

0 ä
, E3 � ä 0

0 1

C � 1 ä - 1

1 - ä ä
.

RegularContinuedFraction
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A continued fraction Ξ is said to be regular if it has the form

Ξ � b0 +
1

b1 +
1

b2+
1

¸

,

where bk Î Z for all k � 0, 1, 2, …  and where bk > 0 for k ³ 1. The regular 

fraction Ξ above can also be written Ξ � @b0; b1, b2, … D or, using Gauss notation,

Ξ � b0 + K
m=1

¥ 1

bm

.

The terms bk are said to be both the partial quotients and the partial denomina�

tors of Ξ, as the partial numerators of Ξ are all identically 1.

It is not uncommon in literature for the unmodified term “continued fraction” 

to mean “regular continued fraction,” and despite an apparent loss of generality 

in doing so, no such loss exists. Indeed, a well-known result in the study of 

continued fractions is the existence of an equivalence transformation r � 8rm< 
between any generalized continued fraction Ξ and an associated regular contin�

ued fraction Ξreg, whereby it follows that any theory for generalized continued 

fractions holds for regular fractions and vice versa. Regular continued fractions 

are especially useful when representing irrationals, for example, because the 

convergents of regular continued fractions are the so-called best rational 

approximations thereof.

RegularContinuedFractionApproximationsSpecialFractions

Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

.

Let a Î R, a > 1. Then for all Ξ with infinitely many bk > a, there exist infinitely 

many rational numbers p �q, such that the inequality

Ξ -
p

q

<
1

a
2 + 4

1

q

has infinitely many solutions for p �q.

RegularContinuedFractionAsymptoticDenominatorDistribut

ion
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For almost every x Î @0, 1D with associated regular continued fraction 

Ξ HxL � @0; b1
x, b2

x, … D, the digit j appears in the expansion of Ξ with density

2 lnH1 + jL - lnH jL - lnH2 + jL

ln2
.

Said a different way, for any i Î Z
+,

lim
n®¥

card 8Κ : bΚ � i, 1 £ Κ £ n<

n

�

2 lnH1 + jL - lnH jL - lnH2 + jL

lnH2L
�

1

lnH2L
ln 1 +

1

iHi + 2L

for almost all x Î @0, 1D where here, @0; b1, b2, … D is the regular continued 

fraction expansion associated to x. This result was originally discovered by Lé vy 

in the early 20th century.

RegularContinuedFractionAveragePartialQuotientGrowth

Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

.

For almost all Ξ the following identity holds:

lim inf
n®¥

1

n

lnHlnHnLL max
1£ j£n

b j �
1

lnH2L
.

RegularContinuedFraction:CommonNotations
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Common notations for the regular continued fraction

Ξ � b0 +
1

b1 +
1

b2+
1

b3+

1

…

include

Ξ � @b0; b1, b2, b3, … D

Ξ � Xb0; b1, b2, b3, … \

Ξ � b0 +
1

b1+

1

b2+

1

b3+
…

Ξ � b0 +
1

b1

+
1

b2

+
1

b3

+ … HPringsheimL

and

Ξ � b0 + K
k=1

¥ 1

bk

HGaussL.

In Gauss’s notation, the uppercase K stands for “Kettenbruch,” which is German 

for “continued fraction.”

While most authors use ak instead of bk to denote the terms of a regular contin�

ued fraction, the bk convention is followed here since it is consistent with 

notations for generalized continued fractions in which ak denotes a partial 

numerator and bk a partial denominator.

Common notations for the nth convergent of a continued fraction include pn �qn 

and An � Bn, the former being more prevalent in older papers and the latter 

being more common in the recent literature.  Here, the notation An � Bn is used.

RegularContinuedFraction:CompleteQuotient

Given a regular continued fraction Ξ of the form

Ξ � b0 +
1

b1 +
1

b2+
1

¸

,

the nth complete quotient Ζn of Ξ is the continued fraction obtained by ignoring 

the first n partial denominators b0, … , bn-1, i.e.,

Ζn � bn +
1

bn+1 +
1

bn+2+
1

¸

.

Other notations for Ζn are Ζn � @bn; bn+1, bn+2, … D or, in Gauss notation,

Ζn � bn + K
m=n+1

¥ 1

bm

.

RegularContinuedFraction:CompleteQuotientDenominator
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RegularContinuedFraction:CompleteQuotientDenominator

Let Ζn be the nth complete quotient of a regular continued fraction 

Ξ � @b0; b1, b2, … D, i.e., Ζn is the regular continued subfraction of the form

Ζn � bn +
1

bn+1 +
1

bn+2+
1

¸

.

The denominators of Ζn are the positive integers bn, bn+1, bn+2, …  which, more 

generally, can be described as the collection of elements bk for k ³ n.

RegularContinuedFraction:CompleteQuotientNumerator

Let Ζn be the nth complete quotient of a regular continued fraction 

Ξ � @b0; b1, b2, … D, i.e., Ζn is the regular continued subfraction of the form

Ζn � bn +
1

bn+1 +
1

bn+2+
1

¸

.

Due to the fact that Ζn is regular, the numerators of Ζn are all identically 1. Said 

another way, the continued fraction Ζn can be written in Gauss notation as

Ζn � bn + K
m=n+1

¥ am

bm

where, for all m � n + 1, n + 2, … , am º 1 are its numerators.

RegularContinuedFraction:Convergence

A regular continued fraction Ξ of the form

Ξ � b0 +
1

b1 +
1

b2+
1

b3+º

with nth convergent Ξn � @b0; b1, b2, … , bnD is said to converge to a value x if 

Ξn ® x as n ® ¥. Note that the concept of regular continued fraction conver�

gence is merely an example of generalized continued fraction convergence 

where the continued fractions in question have partial numerators ak satisfying 

ak � 1, k � 1, 2, 3, … .

RegularContinuedFraction:Convergent
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Given a regular continued fraction Ξ of the form

Ξ � b0 +
1

b1 +
1

b2+
1

b3+º

,

its nth convergent Ξn is the finite continued fraction obtained by truncating Ξ at 

the nth level, i.e.,

Ξn � b0 +
1

b1 +
1

b2+
1

¸+
1

bn

.

Alternate notations for Ξn include the shorthand Ξn � @b0; b1, b2, … , bnD, as well 

as Gauss notation

Ξn � bn + K
m=1

n 1

bm

.

Note that this definition is nothing more than a specialized version of the 

definition of convergent for a generalized continued fraction except that the 

fraction Ξ in question has partial numerators ak which satisfy ak � 1, 

k � 1, 2, 3, … .

RegularContinuedFraction:ConvergentDenominator

Given a regular continued fraction Ξ of the form

Ξ � b0 +
1

b1 +
1

b2+
1

b3+º

,

its nth convergent denominator Bn is the expression in the denominator of the 

nth convergent Ξn � An � Bn where Ξn is the finite continued subfraction of the 

form

Ξn � b0 +
1

b1 +
1

b2+
1

¸+
1

bn

.

Note that this definition is nothing more than a specialized version of the 

definition given for a generalized continued fraction except that the fraction Ξ 

in question has partial numerators ak which satisfy ak � 1, k � 1, 2, 3, … .

RegularContinuedFraction:ConvergentNumerator
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Given a continued fraction Ξ of the form

Ξ � b0 +
1

b1 +
1

b2+
1

b3+º

,

its nth convergent numerator An is the expression in the numerator of the nth 

convergent Ξn � An � Bn where Ξn is the finite continued subfraction of the form

Ξn � b0 +
1

b1 +
1

b2+
1

¸+
1

bn

.

Note that this definition is nothing more than a specialized version of the 

definition given for a generalized continued fraction except that the fraction Ξ 

in question has partial numerators ak which satisfy ak � 1, k � 1, 2, 3, … .

RegularContinuedFractionConvergentsApproximationPrope

rty

Let

Ξ � b0 + K
k=1

N 1

bk

be a regular continued fraction with bk Î Z
+ and Ak � Bk the sequence of its 

convergents. Then

Ξ -
An

Bn

£
1

Bn Bn+1

£
1

B
n

2
.

RegularContinuedFractionConvergentsApproximationsBett

erThanRoot5

For any continued fraction Ξ

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, set

Λn �
1

B
n

2

1

¢Ξ -
An

Bn

¦
.

Then for all c > 5  there is Ξ with finitely many Λn > c.

RegularContinuedFractionConvergentsIrreducibility
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RegularContinuedFractionConvergentsIrreducibility

Let

Ξ � b0 + K
k=1

N 1

bk

be a regular continued fraction with bk Î Z
+ and pk �qk the sequence of its 

convergents.

Then for all n Î Z
+, the following identities hold for the convergents:

gcdHpn, qnL � 1

gcdHpn, qn+1L � 1

gcdHpn+1, qnL � 1.

RegularContinuedFractionConvergentsMembership

Let p �q be an irreducible fraction. Let Ξ be a positive real number. If

Ξ -
p

q

£
1

2 q
2

or

¡p2
- q

2
Ξ

2¥ £ Ξ.

Then p �q is a convergent of the regular continued fraction of Ξ.

RegularContinuedFraction:Divergence

Divergence of a regular continued fraction Ξ of the form

Ξ � b0 +
1

b1 +
1

b2+
1

b3+º

with nth convergent Ξn � @b0; b1, b2, … , bnD occurs when Ξn fails to converge to 

a finite expression as n ® ¥. Note that this definition is nothing more than a 

specialized version of the definition given for a generalized continued fraction 

except that the fraction Ξ in question has partial numerators ak which satisfy 

ak � 1, k � 1, 2, 3, … .

RegularContinuedFraction:Expansion
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Given a constant c, a regular continued fraction expansion is an expression of 

the form

Ξ � b0 + K
k=1

¥ 1

bk

with partial denominators bk taken from some domain, usually positive inte�

gers, such that Ξ � c.

RegularContinuedFraction:FiniteContinuedFraction

A finite regular continued fraction Ξ is a regular continued fraction of the form

Ξ � b0 +
1

b1 +
1

b2+
1

¸+
1

bn

which terminates after only finitely many terms.

A well-known result in the theory of continued fractions is that the associated 

continued fraction ΞHΑL of an element Α Î R is finite (and hence is of the form 

Ξ HΑL � @ Β0; Β1, Β2, … , ΒnD, Βk Î Z for all k, Βn ¹ 0 for n ³ 1) precisely when 

Α Î Q. For that reason, finite continued fractions play an important role in 

many branches of mathematics due to the fact that irrationals (i.e., elements 

whose associated continued fractions are infinite) can be estimated arbitrarily 

well by such terms.

RegularContinuedFractionFirstThreeConsecutiveConvergen

tsApproximationPropertyForPartialQuotientsGreaterThan

One

For any continued fraction Ξ

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, set

Λn �
1

B
n

2

1

¢Ξ -
An

Bn

¦
.

Then bn+2 ³ 2 implies that maxHΛn, Λn+1, Λn+2L > 2 2 .

RegularContinuedFractionFiveConsecutiveConvergentsApp

roximationPropertyForPartialQuotientsOneTwo
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RegularContinuedFractionFiveConsecutiveConvergentsApp

roximationPropertyForPartialQuotientsOneTwo

For any continued fraction Ξ

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, set

Λn �
1

B
n

2

1

¢Ξ -
An

Bn

¦
.

Then bn+1 � 1 and bn+2 � 2 implies

maxHΛn, Λn+1, Λn+2, Λn+3, Λn+4L > I2 + 5 10 M �6.

RegularContinuedFractionFordCircleChains

Let Ξ be a positive real number with regular continued fraction expansion

Ξ � b0 + K
j=1

¥ 1

b j

and convergents An � Bn.

Then the Ford circles of the convergents An � Bn form a chain, meaning the Ford 

circle of the convergent Ak � Bk is tangent to the Ford circle of the convergent 

Ak+1 � Bk+1.

RegularContinuedFractionGeneralConvergentsApproximati

onProperty

Let x be an irrational number and

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of x with convergents An � Bn.  If

Ξ -
An

Bn

³
1

r
2 + 4 B

n

2

holds for all n Î 8m - 1, m, m + 1<, the inequality bm+1 < r holds.

RegularContinuedFractionHalfRegularContinuedFractionCo

nvergentsRelation
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RegularContinuedFractionHalfRegularContinuedFractionCo

nvergentsRelation

Let Ξ have the regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

and An � Bn the sequence of its convergents. Let Ξ have the half-regular contin�

ued fraction expansion

Ξ � Β0 + K
k=1

¥ ¶k

Βk

and pn �qn the sequence of its convergents with ¶k Î 8-1, 1<, Βk Î Z
+, Βk ³ 2 and 

Βk + ¶k+1 ³ 2, ¶1 � sgnHΞL,   Β1 - 1 �  Ξ¤¤ < 1 �2.

Then for all n ³ 0 there exists a unique function kHnL, such that

An+1

Bn+1

�
pkHnL+1

qkHnL+1

or
An+1

Bn+1

�
pkHnL+2

qkHnL+2

with the latter case if and only if bkHnL+2 � 1. For almost all Ξ

lim
n®¥

kHnL

n

�
lnH2L

lnHΦL

holds.

RegularContinuedFractionLevelSetFact1

Let I be the set of irrational numbers from the interval @0, 1D. Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α ;

then

FΑ � Æ if Α Ï @0, 1D.

RegularContinuedFractionLevelSetFact2
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Let I be the set of irrational numbers from the interval @0, 1D. Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α

and

N � 8x Î I : $n "m>n bm � 1<,

then

N Ì F0.

RegularContinuedFractionLevelSetFact3

Let I be the set of irrational numbers from the interval @0, 1D. Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn and Η be the quadratic surd

Ηk � K
k=1

¥ 1

k

.

Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α

then

Ηk Î F
-lnHkL�JlnJk�2+Ik2�4+1M

1�2
N

and

lim
k®¥

-lnHkL � IlnIk �2 + Ik2 �4 + 1M1�2M � 1.

RegularContinuedFractionLevelSetFact4
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Let I be the set of irrational numbers from the interval @0, 1D.  Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α

and

N � x Î I : lim
j®¥

b j � ¥

then

N Ì F1.

RegularContinuedFractionLevelSetFact5

Let I be the set of irrational numbers from the interval @0, 1D. Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α .

Then for almost all x Î I,

x Î F12 lnH2L lnHKL�Π2

holds.

RegularContinuedFractionLevelSetFact6
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Let I be the set of irrational numbers from the interval @0, 1D.  Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ
* �

x Î I : lim sup
n®¥

Û
j=1

n

b j

Bn

³ Α for Α ³ 12 ln H2L ln HKL � Π2

x Î I : lim sup
n®¥

Û
j=1

n

b j

Bn

£ Α for Α £ 12 ln H2L ln HKL � Π2.

Then for Αq � 1 - 1� Iq2 lnHqLM

9x Î I : " j³1 b j ³ q= Ì FΑq

*
.

RegularContinuedFractionLevelSetFact7

Let I be the set of irrational numbers from the interval @0, 1D.  Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α .

Then if x Î F1, then

lim
j®¥

b j � ¥.

RegularContinuedFractionLevelSetFact8
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Let I be the set of irrational numbers from the interval @0, 1D.  Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents AnHΞL � BnHΞL.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α .

Then the Hausdorff dimension of FΑ

dimHFΑL � f HΑL,

where

f HΑL � maxI-t
`
HΑL, 0M.

Here, t
`
HΑL is the Legendre transform of tHΑL

t
`
HΑL � sup

cÎR

Hc Α - tHcLL

and tH ΒL is defined implicitly through PHtH ΒL, ΒL � 0 and

PHt, ΒL � lim
n®¥

1

n

ln â
b1=1

¥

… â
bn=1

¥

Bn K
k=1

n 1

bk

-2 t

ä
j=1

n

b j

-2 Β
.

The function f HΑL is strictly convex in @0, 1D and continuous and real-analytic in 

H0, 1L.  Its maximal value is

f

12 lnH2L ln HKL

Π2
� 1.

Furthermore,

f H0L � 0

f H1L �
1

2

lim
Α®0+

f
¢HΑL � ¥

lim
Α®1-

f
¢HΑL � -¥.

RegularContinuedFractionLevelSetFact9
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Let I be the set of irrational numbers from the interval @0, 1D.  Let Ξ Î I have the 

regular continued fraction expansion

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn.  Let

FΑ � x Î I : lim
n®¥

Û
j=1

n

b j

Bn

� Α

and

Iq � x Î I : x � K
k=1

¥ 1

bk

í " j³1 b j ³ q .

Then the Hausdorff dimension dimH of Iq

dimH Iq ~
1

2
+

1

2

lnHlnHqLL

lnHqL

as q ® ¥.

RegularContinuedFractionMeanConvergentsApproximation

Property

For any continued fraction Ξ

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, set

Λn �
1

B
n

2

1

¢Ξ -
An

Bn

¦
.

Then

liminf
m

1

m
â
i=0

m-1

Λi ³ 5 .

RegularContinuedFractionNConsecutiveConvergentsAppro

ximationProperty
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Let

Ξ � b0 + K
k=1

N 1

bk

be a regular continued fraction with bk Î Z
+ and Ak � Bk the sequence of its 

convergents.

Then for all n Î Z
+, k Î Z

+

min B
n

2
Ξ -

An

Bn

, B
n+1
2

Ξ -
An+1

Bn+1

, … , B
n+k

2
Ξ -

An+k

Bn+k

< ck

where

ck �
1

5

+
1

5

3 - 5

2

2 k+3

.

The constant ck is the best possible constant.

RegularContinuedFraction:PartialDenominator

The partial denominators of a regular continued fraction Ξ of the form

Ξ � b0 + K
m=1

N 1

bm

(where N may be infinite) are the elements bk, k � 0, 1, 2, … .

RegularContinuedFraction:PartialNumerator

Given a collection of integers 8bk<
k�0
¥  with bn ¹ 0 for n ³ 1, a regular continued 

fraction Ξ is a (finite or infinite) fraction of the form

Ξ � b0 + K
m=1

N 1

bm

,

i.e., a fraction whose partial numerators ak satisfy ak � 1 for all k � 1, 2, … , N 

(where here, N may be infinite). Therefore, by definition, the partial numera�

tors of an arbitrary regular continued fraction Ξ are all identically 1.

RegularContinuedFraction:Period
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A regular continued fraction Ξ of the form

Ξ � b0 + K
m=1

¥ 1

bm

is said to be periodic provided its terms eventually repeat from some point 

forward, and the minimal number of repeating terms in such a fraction is called 

its period. Said differently, if Ξ � @b0; b1, b2, … D is a regular continued fraction 

and if k is the smallest positive integer for which br k+m � bm for all 

m � 1, 2, … , k, r � 0, 1, 2, … , then Ξ is said to be periodic and k is said to be 

the period of Ξ.

Given the continued fraction Ξ above with nth convergent Ξn � An � Bn, it can be 

shown that Ξ is generated by successive recursive composition of the linear 

fractional transformation s � s HwL, where

s HwL �
Ak-1 w + Ak

Bk-1 w + Bk.

By studying transformations of this form— specifically the fixed points of such 

transformations— several key continued fraction convergence results can be 

derived. Such techniques can be found throughout the works of Abel, Lane, 

Stolz, Pringsheim, Perron, Schwerdtfeger, and Wall.

RegularContinuedFractionReciprocal

Given the regular continued fraction expansion of a real number Ξ

Ξ � b0 + K
k=1

N 1

bk

(for N possibly ¥), the reciprocal continued fraction when b0 � 0 is

1

Ξ
� b1 + K

k=1

N 1

bk+1

and the reciprocal continued fraction for b0 > 0 is

1

Ξ
� K

k=1

N 1

bk-1

.

RegularContinuedFractionSecondThreeConsecutiveConver

gentsApproximationPropertyForPartialQuotientsGreaterTh

anOne
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For any continued fraction Ξ

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, set

Λn �
1

B
n

2

1

¢Ξ -
An

Bn

¦
.

Then bn+2 ³ 2 implies that Λn+1 > 5 �2 ê maxHΛn, Λn+2L > 5 �2.

RegularContinuedFractionsOfSquareRootsOfRationals

Let Ξ > 1 be a rational number and Ξ Ï Z. Then the regular continued frac�

tion expansion of Ξ

Ξ � b0 + K
k=1

¥ 1

bk

is periodic with period Ν and the periodic part consists of a symmetric initial 

sequence followed by the term 2 b0.

For k ³ 1 the following relations hold:

bHk mod ΝL+1 � bk+1

bΝ � 2 b0

bΝ-k � bk for 1 £ k < Ν - 1.

RegularContinuedFraction:StrictVanVleckFraction

Let Ξ be a regular continued fraction of the form

Ξ �
1

b1 +
1

b2+
1

b3+º

where each partial denominator bk is an arbitrary complex number and let 

wn � @0; b1, b2, … , bnD denote the nth convergent of Ξ. Suppose further that 

Re HbnL > 0 for all n and that, for Θ < Π �2 arbitrary,  argHbnL¤ < Θ. Such a fraction Ξ 

is said to be a strict Van Vleck fraction with angle Θ.

RegularContinuedFractionSumAndProductOfTwoConsecuti

veConvergentsApproximationProperty
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For any continued fraction Ξ

Ξ � K
k=1

¥ 1

bk

with convergents An � Bn, set

Λn �
1

B
n

2

1

¢Ξ -
An

Bn

¦
.

Then Λn Λn+1 > Λn + Λn+1 > maxIHΛn - 1L Λ
n

2, HΛn+1 - 1L Λ
n+1
2 M > 4.

RegularContinuedFractionsWithIdenticalTails

Let Ξ and Η be two irrational numbers with regular continued fraction 

expansions

Ξ � b0 + K
k=1

¥ 1

bk

Η � c0 + K
k=1

¥ 1

ck

.

If and only if there exist integers a, b, c, and d with a d - b c � 1, then there 

exist integers N, M, such that for all n ³ N

bn � cM+n.

RegularContinuedFractionThreeConsecutiveConvergentsA

pproximationProperty
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Let

Ξ � b0 + K
k=1

N 1

bk

be a regular continued fraction with bk Î Z
+ and An � Bn the sequence of its 

convergents.  Then for all n Î Z
+, either

Ξ -
An

Bn

<
1

5 B
n

2

or

Ξ -
An+1

Bn+1

<
1

5 B
n+1
2

or

Ξ -
An+2

Bn+2

<
1

5 B
n+2
2

.

RegularContinuedFractionTwoConsecutiveConvergentsApp

roximationProperty

Let

Ξ � b0 + K
k=1

N 1

bk

be a regular continued fraction with bk Î Z
+ and Ak � Bk the sequence of its 

convergents.  Then for all n Î Z
+, either

Ξ -
An

Bn

<
1

2 B
n

2

or

Ξ -
An+1

Bn+1

<
1

2 B
n+1
2

.

RegularContinuedFraction:VanVleckFraction
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Let Ξ be a regular continued fraction of the form

Ξ �
1

b1 +
1

b2+
1

b3+º

where each partial denominator bk is an arbitrary complex number and let 

wn � @0; b1, b2, … , bnD denote the nth convergent of Ξ. Suppose further that 

Re HbnL > 0 for all n. Then Ξ is called a Van Vleck fraction.

RegularContinuedFractionWithAveragePartialQuotientGro

wth

Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

.

Let k, K, M0 Î R
+ with k > 1 and K ³ 2. Let the bk fulfill the conditions

max
ln

2HkL M K
k

M

<n£ln
2HkL HM+1L K

k
M

an � fK
k

M+1

v

max
ln

2HkL HM+1L K
k

M

<n£ln
2HkL HM+1L K

k
M+1

an � fK
k

M+1

v

where M Î Z
+ and M > M0. Then

lim inf
n®¥

1

n

lnHlnHnLL max
1£ j£n

b j �
1

lnH2L
.

RegularContinuedFractionWithPartialDenominatorRestricti

onTheoremHirst1

Let 8Φn<
n=1
¥  be a strictly increasing sequence of natural numbers and let Α be 

chosen so that Ún=1
¥ Φ

n

-Α converges for real positive Α.  Let A have the property 

that

â
n=1

¥ ΘHΦn - AL

Φ
n

Α
£

1

2Α�2
.

Then the set of all continued fractions

Ξ : Ξ � K
k=1

¥ 1

bk

í bk ³ A í bk Î 8Φn<

has Hausdorff dimensions less than or equal to 1 �2.

RegularContinuedFractionWithPartialDenominatorRestricti

onTheoremHirst2
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RegularContinuedFractionWithPartialDenominatorRestricti

onTheoremHirst2

Let 8Φn<
n=1
¥  be a strictly increasing sequence of natural numbers and let Α be 

chosen so that Ún=1
¥ Φ

n

-Α diverges for real positive Α.

Then the set of all continued fractions

Ξ : Ξ � K
k=1

¥ 1

bk

í bk Î 8Φn<

has Hausdorff dimensions less than or equal to Α �2.

RegularContinuedFractionWithPartialDenominatorRestricti

onTheoremHirst3

Let 8Φn<
n=1
¥  be a strictly increasing sequence of natural numbers and let Α be 

chosen so that Ún=1
¥ Φ

n

-Α diverges for real positive Α.

Then the set of all continued fractions

Ξ : Ξ � K
k=1

¥ 1

bk

í bk Î 9nb=
n=1

¥
í n Î Z

+ í bk ³ k
b

has Hausdorff dimensions less than or equal to b �2.

RegularExpansionUnderSchinzelCondition
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Let A,B,C be integers where B > 0, C > 0,

¡B2
- A

2
C¥ � 1

and gcdIA2, 2 B, CM is squarefree,

d � gcdIA2
, 2 B, CM,

N be a natural number, X be a formal variable,

y �
B

A

be a rational number,

Η � K
n=1

¥ 1

an

be the regular continued fraction of y, k be the length of the continued fraction 

Η,

DHXL � A
2

X
2

+ 2 B X + C

be a Schinzel sleeper,

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of DHXL , and p be the regular continued 

fraction period of Ξ.  Given d is squarefree, then

p � 1 + k

and

$N "X>N Hb0 � A X + a0 ì "1£n£k bn � an ì b1+k � 2 HA X + a0LL.

RegulatorOfRealQuadraticFieldUsingContinuedFractions
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Let D be a square-free positive integer and for the regular continued fraction 

for D

Ξ � K
k=1

¥ 1

bk

bp+n � bn

define

P0 � 0

Q0 � 1

Pn+1 � bn Qn - Pn

Qn+1 �
D - P

n+1
2

Qn

Θn �
D + Pn

Qn

.

Then the fundamental unit for QI D M is

Ε �
1

2
IAr-1 + D Br-1M if there is r < e

p

2
u, Qr � 4

A Hp - 1L + D B Hp - 1L otherwise

�

2 Û
i=0

r

ΘHiL if there is r < e
p

2
u, Qr � 4

J D + PJ
p+1

2
NN Û

i=0

dp�2t
ΘHiL if p is odd

QI
p

2
M Û

i=0

p�2
ΘHiL if p is even.

RegulatorOfRealQuadraticFieldUsingNearestIntegerContinu

edFractions
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Let D be a square-free positive integer and for the regular continued fraction 

for D

Ξ � K
k=1

¥ 1

bk

bp+n � bn

define

P0 � 0

Q0 � 1

Pn+1 � bn Qn - Pn

Qn+1 �
D - P

n+1
2

Qn

.

If D ¹ 5, D ¹ 13, and there are x and y so that ¡x2 - y
2

D¥ � 4, then there is an 

r £ dp �2t with Qr � 4 and the fundamental unit for QI D M is

Ε � Ar-1 + D Br-1.

ReinerTheorem

Let K be a division ring and let R � K@x be the ring of polynomials in an indeter�

minate x with coefficients in K, where it is assumed that x commutes with all 

elements of K. For f1, f2, … , fN Î R, define A and B as the formal numerator 

and denominators of the continued fraction having terms fi and denote this as 

Ξ � @ f1, f2, … , fN] ~ A � B, where A � B can be defined by the relation

f1 1

1 0
.

f2 1

1 0
º

fN 1

1 0
.

1

0
� A

B
.

Let f ® f
* denote any homomorphism of (R, +) into itself, which leaves K 

elementwise fixed and satisfies Ha f L* � a f
* for all a Î K, f Î R.  Then 

Ξ � @ f1, f2, … , fN] ~ A � B and A, B Î K implies Ξ* �[ f1
*, f2

*, … , f
N

* ] ~ A � B.

RemarkOnDivergenceOfCertainJFractions
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, An � Bn denote the n t h convergence of f , let Ω Î C be an arbitrary 

complex number with w � Ω2, and for notational convenience, let u j � 2 b j for 

j ³ 0 and let v j � 1 - 4 a j for j ³ 1. If x � cosHJL, Ω � ã±ä J for 0 < J < Π, then

An+1HxL

Bn+1HxL
-

AnHxL

BnHxL
³ 2  1 + w¤2 K

-2 ä
j�1

n

¡1 - v j¥

for

K � K HΩL � 2 1 + â
r�1

¥

 1 - w¤-r
Ρ-1 H0L Ρ0 H1L ºΡr-2 H1L ,

Ρk HRL � â
j�k+1

¥

I¡u j¥ R
1�2 I1 + R

j-kM + ¡v j¥ IR + R
j-kMM.

In particular, this shows that for all x Î H-1, 1L the continued fraction f HxL 

diverges.

RemarkOnGeneralAnalyticContinuedFractionsAndBranchP

oints

Let FHzL be a general analytic limit periodic continued fraction of the form

F HzL �
1

Λ HzL + b0 HzL -
a1HzL

Λ HzL+b1 HzL-
a2HzL

Λ HzL+b2 HzL-
a
3

HzL

¸

where an HzL T 0, bn-1HzL and ΛHzL are holomorphic functions of z in a region 

G Ì C for n ³ 1, and where limn®¥ an HzL � 1 �4, limn®¥ bn HzL � 0 hold uniformly 

on each compact subset of G. If the open set G* is defined so that G* � G �S 

where S � 8z Î G : Λ HzL Î @-1, 1D<, if Ω` HzL is defined on each component of G* so 

that Ω
` HzL � Ω HΛHzLL where Ω HzL � z - Iz2 - 1M1�2

 with roots chosen positive for 

z > 1, z Î C � @-1, 1D, and if G** is defined to be the 2-sheeted Riemannian 

surface of Ω
` HzL over G obtained by analytic extension of Ω

`
 from each compo�

nent of G* across S into a second copy of G, then the point z0 Î S is a branch 

point of Ω
` HzL extended onto G** if and only if Λ Hz0L � ±1 of odd order.

RemarkOnGeneratingFunctionsAndJFractionConvergence
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RemarkOnGeneratingFunctionsAndJFractionConvergence

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , where lim an � 1 �4 and lim bn � 0 

hold, and where An HzL � Bn HzL denotes the nth approximant of f . Suppose that

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥

and, in addition, let Ω Î C be an arbitrary complex number with w � Ω2 where, 

for convenience, the notation u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1 is 

adopted. For  Ω¤ £ 1, Ω ¹ 1,  z¤ < 1, define the function GkHzL to be the generating 

function of the sequence S
k

HnLHzL for n > k, i.e., Gk HzL � Ú
n�k+1
¥

z
n

S
k

HnL HzL where

S
k

HnL HΩL � 1 - w
n-k

+ â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL I1 - w

n- jrM,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. It follows, then, that

GkHzL �
z

k+1H1 - wL

H1 - zL H1 - z wL
1 + â

r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2HΩL º c jr-1, jrHΩL z

jr-k
,

and hence that:

1. GkHzL converges absolutely for  Ω¤ £ 1, Ω ¹ 1,  z¤ £ 1.

2. Absolute convergence in GkHzL also happens provided that 

Ú
j�k+1
¥ ¡ck, j HΩL z

j¥ < ¥, a criterion satisfied whenever  z¤ < 1,  Ω¤ £ 1, and 

u j, v j, ck, j are bounded for j > k ³ -1.

3. The function GkHzL satisfies

lim
z®1

H1 - zL Gk HzL � Sk HzL

where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL.

RepresentabilityOfRealNumbersAsSumsOfNumbersWhose

FractionalPartsContinuedFractionsPartialQuotientsAreNotL

essThan2
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RepresentabilityOfRealNumbersAsSumsOfNumbersWhose

FractionalPartsContinuedFractionsPartialQuotientsAreNotL

essThan2

Every real number x can be represented as a sum of two numbers whose 

regular continued fractions x � Ha1 + Ξ1L + Ha2 + Ξ2L

Ξ j � 0 + K
k=1

¥ 1

bk

with 2 £ bk for all k and i � 1, 2.

RepresentationTheoremForAleksenkoSpectrum

Let

Ξ � K
n=1

¥ 1

bn

be a regular continued fraction with convergents An � Bn, fn be a sequence 

where ¢Ξ -
A f HnL

B f HnL
¦ <

1

2 B
f HnL
2

,

Qn � B f HnL,

ΜHΑLHtL be a Minkowski diagonal function,

mHΑL � lim sup
t®¥

t ΜHΑLHtL,

ΑΝ be the complete quotients of Ξ,

HΑΝL* � from the continued fraction @0; bΝ, … , b1D,

Ξ
-1 �

1

Ξ

be its regular continued fraction, ΑΝ
-1 be the complete quotient continued 

fraction of Ξ-1,

FHx, yL �
H1 - x yL2

4 H1 - xL H1 - yL Hx y + 1L

GHx, yL �
1

4
Hx + y + 1L

mnHΑL �
GIΑΝ

*, ΑΝ+2
-1 M $Ν 8Qn, Q1+n< � 8B-1+Ν, B1+Ν<

F IΑΝ+1
* , ΑΝ+2

-1 M $Ν 8Qn, Q1+n< � 8BΝ, B1+Ν<

and then define

iHΑL � lim inf
n®¥

mnHΑL

I � 9m : $Ξ iHΑL � m.

Then $w0
@1 �4, w0D Ì I.

RepresentationTheoremForMinkowskiSpectrum
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RepresentationTheoremForMinkowskiSpectrum

Let

Ξ � K
n=1

¥ 1

an

be a regular continued fraction with convergents An � Bn, fn be a sequence 

where ¢Ξ -
A f HnL

B f HnL
¦ <

1

2 B
f HnL
2

,

Qn � B f HnL,

ΜHΑLHtL be a Minkowski diagonal function set,

mHΑL � lim sup
t®¥

t ΜHΑLHtL, and

define M to be real numbers m where

$Ξ mHΑL � m.

Then M Ì @1 �4, 1 �2D and 81 �4, 1 �2< Î M.

RestrictedDenominatorContinuedFractions

Let Fk be the set of all infinite regular continued fractions with partial denomina�

tors between 1 and k.

Fk � Ξ : Ξ � K
j=1

¥ 1

b j

í b j Î Z
+ í 1 £ b j £ k .

Let Pk be the closed interval

Pk � K
j=1

¥ 1

k for j mod 2 � 1

1 for j mod 2 � 0

, K
j=1

¥ 1

1 for j mod 2 � 1

k for j mod 2 � 0

.

Let Ok be the set

Ok � æ
m=1

¥

K
j=1

¥ 1

b j for 1 £ j £ m

k for H j - mL mod 2 � 1

1 for H j - mL mod 2 � 0

, K
j=1

¥ 1

b j for 1 £ j £ m

1 for H j - mL mod 2 � 1

k for H j - mL mod 2 � 0

where b j Î Z
+ and 1 £ b j £ k and bm ¹ m.  Then Fk is the following set-theoretic 

difference: Fk � Pk �Ok.

ReversePeriodicRegularContinuedFraction
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ReversePeriodicRegularContinuedFraction

Let Ξ > 1 be an irrational solution of a quadratic equation with rational coeffi�

cients of the form

Ξ �
P + D

Q

with p, Q, D Î Z with P ³ 0, D > 0, and Q > 0, and Q ý ID - P
2M. Let the regular 

continued fraction expansion of Ξ be purely periodic

Ξ � b0 + K
k=1

¥ 1

bk mod m

.

If the conjugate of Ξ is

Η �
P - D

Q

then the following expansion holds:

-
1

Η
� bm + K

k=1

¥ 1

bm-k mod m

.

RichardsFareyProcessApproximationTheorem

Given any irrational number Ξ with 0 < Ξ < 1, the Farey process (zeroed in on 

Ξ) gives a sequence of best left and best right approximations to Ξ.  Further�

more, every best left/right approximation arises in this way.

RichardsFareyProcessRealNumberTheorem

Every rational number p �q in lowest terms with 0 < p �q < 1 appears at some 

stage of the Farey process.

RichardsFastContinuedFractionAlgorithmTheorem

Given any irrational number Ξ with 0 < Ξ < 1, the fast continued fraction 

algorihtm gives precisely the set of ultra-close approximations to Ξ.

RogersRamanujanContinuedFractionConvergenceAtRootsO

fUnity
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RogersRamanujanContinuedFractionConvergenceAtRootsO

fUnity

Let Τ be a complex number, define the modular nome by

q � ã
2 ä Π Τ

,

let rHΤL be the Rogers Ramanujan continued fraction of q, and x � a �b be a 

rational number. Then rHΤL converges Í b mod 5 ¹ 0 and

b mod 5 ¹ 0 Þ r

a

b

�
a Iã2 Π ä a b�5

rH0LM
5�b

b

.

RogersRamanujanContinuedFractionExpressibleAsRadicals

Let Τ be a complex number, define the modular nome by

q � ã
2 ä Π Τ

,

let rHΤL be the Rogers Ramanujan continued fraction of q,

jHΤL � JHΤL

the Klein invariant J, and f HΤL be the dehomogenized icosahedral equation. 

Then jHΤL is expressible as radicals ì f HΤL is reducible Í rHΤL is expressible as 

radicals.

ScaledApproximationCoefficientsLimit

Let 0 < Ξ < 1 be an irrational number with regular continued fraction 

representation

Ξ � 0 + K
k=1

¥ 1

bk

be a continued fraction and An � Bn the sequence of its convergents.

Then the following identity hold for almost all Ξ:

lim
n®¥

1

n

ln Ξ -
An

Bn

� -
Π2

6 lnH2L
.

SchmidtExpansionConsecutiveConvergents
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Let Ξ be a complex number with ImHΞL ³ 0 with Schmidt expansion 

Ξ � M1 × M2 ×… × MN and convergents 9A
n

H0L � B
n

H0L, A
n

H1L � B
n

H1L, A
n

H¥L � B
n

H¥L=.

Then for all A
n

HlL � B
n

HlL, l Î 80, 1, ¥<, if P1IΤ jHΞ, 1, I2LM Î C the following holds:

¢An+1
HlL ¦ ³ ¡A

n

HlL¥ and ¢Bn+1
HlL ¦ ³ ¡B

n

HlL¥ .

SchmidtExpansionConvergents

Let Ξ be a complex number with ImHΞL ³ 0 with Schmidt expansion convergents 

9A
n

H0L � B
n

H0L, A
n

H1L � B
n

H1L, A
n

H¥L � B
n

H¥L=. Then for almost all A
n

HlL � B
n

HlL, l Î 80, 1, ¥<, the 

following hold:

lim
n®¥

¡lnIB
n

HlLM¥

n
� C

lim
n®¥

1

n

ln Ξ -
A

n

HlL

B
n

HlL
� -

2 C

Π
.

SchmidtExpansionMultipleConvergents

Let Ξ be a complex number with ImHΞL ³ 0 with Schmidt expansion 

Ξ � M1 × M2 ×… × MN and convergents 9p
n

H0L �q
n

H0L, p
n

H1L �q
n

H1L, p
n

H¥L �q
n

H¥L=. Then for all 

p
n

HlL �q
n

HlL, l Î 80, 1, ¥<, the following holds:

If M j Î 8V1, E2, E3<:

Jpn+1
H¥L � p

n

H¥L ë pn+1
H¥L � ä p

n

H¥L N í Jqn+1
H¥L � q

n

H¥L ë qn+1
H¥L � ä q

n

H¥L N ;

If M j Î 8V2, E3, E1<:

Jpn+1
H0L � p

n

H0L ë pn+1
H0L � ä p

n

H0L N í Jqn+1
H0L � q

n

H0L ë qn+1
H0L � ä q

n

H0L N .

If M j Î 8V3, E1, E2<:

Jpn+1
H1L � p

n

H1L ë pn+1
H1L � ä p

n

H1L N í Jqn+1
H1L � q

n

H1L ë qn+1
H1L � ä q

n

H1L N .

ScottWallCaseOfLeightonConjecture
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Let Ξ be a C-fraction,

Ξ � K
n=1

¥ an z
Αn

1
,

m be a natural number, D be the unit disk, and B be the domain boundary set 

of D.  Then given

an � a

Αn � m
n

it follows that Ξ converges in D to a meromorphic function and that B is the 

natural meromorphic boundary.

SeidelEquivalenceTheorem

Let

Ξ1 � K
n=1

¥ a1HnL

b1HnL

be a generalized continued fraction,

Ξ2 � K
n=1

¥ a2HnL

b2HnL

be a generalized continued fraction, and rn be an equivalence transformation. 

Then

$rn
Hr0 � 1 ì rn ¹ 0 ì b1HnL � rn b2HnL ì a1HnL � rn-1 rn a2HnLL Í

Ξ and Η are equivalent.

SeidelMultiplicationTheorem
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Let

Ξ � b0 + K
k=1

N ak

bk

be a continued fraction with convergents pk �qk. Let Ρk be a sequence with 

Ρk ¹ 0 for all k and let

Η � Ρ0 b0 + K
k=1

N Ρk-1 Ρk ak

Ρk bk

be a continued fraction with convergents Pk �Qk. Then the following identities 

hold:

Η � Ρ0 Ξ

Pk � Ρ0 ´ ä
j=1

k

Ρ j ´ pk

Qk � ä
j=1

k

Ρ j ´qk.

SeidelSternTheorem

A positive continued fraction Ξ � K
n=1

¥

1 �bn converges if and only if Ún

¥
bn � ¥.  If 

Ún

¥
bn < ¥, then Ξ diverges generally.

SeidelSternTheoremTransformed

A positive continued fraction Ξ � K
n=1

¥

an �bn converges if and only if its Stern-

Stolz series diverges to ¥, i.e., if and only if Ún=1
¥

bn Û
k=1
n

a
k

H-1Lk+n+1 � ¥.

SemiUniqueRegularChainRepresentationsOfCertainComple

xNumbers

For any complex number Ξ Î C �QHäL which is properly equivalent to some real 

number r Î R, there exist precisely two regular chains c h1 Ξ and c h2 Ξ represent�

ing Ξ.

SeriesToContinuedFraction
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SeriesToContinuedFraction

Let ck ¹ 0 for all integer k ³ 0 and

Ξ � â
k=0

N

ck.

Then the continued fraction

Η � c0 + K
k=1

N

c1 for k � 1

-
ck

ck-1

for k > 1

1 for k � 1

1 +
ck

ck-1

for k > 1

has the property that for all integer m ³ 0 the following identities hold:

â
k=0

m

ck � c0 + K
k=1

m

c1 for k � 1

-
ck

ck-1

for k > 1

1 for k � 1

1 +
ck

ck-1

for k > 1

.

ShiftTransformation
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The unmodified term “shift transformation” refers to the mapping of a regular 

continued fraction Ξ � @b0; b1, b2, … D to the translated regular continued 

fraction Ξ1 � @b1; b2, b3, … D. This idea can be generalized to the n-fold composi�

tion of the above transformation which takes Ξ to the regular continued fraction 

Ξn � @bn; bn+1, bn+2, … D. Restricted to numbers x in the interval H0, 1L with 

corresponding regular continued fractions Ξ HxL � @0; b1, b2, … D, the shift trans�

formation T is defined so that T : @0; b1, b2, … D # @0; b2, b3, … D and is given by 

the closed-form expression

T HxL �
1

x

-
1

x

.

The map T is studied by way of measure theory and functional analysis, for 

example, and in addition to the fact that Gauss’ measure is invariant with 

respect to it, T can also be shown to be ergodic and indecomposable with 

respect to Lebesgue measure. Results of this variety can be found in Billingsley, 

among others.

In general, however, there are a number of differing shift transformations 

which are also studied from a variety of different contexts. For example, 

Schmidt proved that analogous theorems to the above hold for the analogously-

defined shift transformation Τ for regular chain and dually regular chain repre�

sentations of a complex number z Î C. Various other, more specialized types of 

shift transformations exist as well, for example the Β-shift and Ha, bL-shift 

transformations.

SleszynskiPringsheimContinuedFractionValueSet

For every complex number f  from the unit disk (  f ¤ £ 1) with the exception 

f � 0, there exists a leszy ski-Pringsheim continued fraction

Ξ � b0 + K
k=1

N ak

bk

such that Ξ � f .

SleszynskiPringsheimTheorem

Let

Ξ � b0 + K
k=1

¥ ak

bk

be a leszy ski-Pringsheim continued fraction. Then Ξ converges absolutely to 

some value f  with 0 <   f ¤ £ 1.

SpecialRelativityVelocityAdditionsContinuedFraction
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SpecialRelativityVelocityAdditionsContinuedFraction

Let k be a nonsquare integer, k > 5. Let x0 Î Q, x0 > 0. Define the sequence xn 

through

xn+1 �
xn + 1

1 + xn �k

.

Let

k � K
j=1

¥ 1

b j

be the regular continued fraction expansion with convergents pk �qk.  Then 

there are at most finitely many solutions of the equation xn � pk �qk.

A closed form for xn is given by

xn �
k

-1

k +k

n

I- k + x0M +
1

k -k

n

I k + x0M

-1

k +k

n

I k - x0M +
1

k -k

n

I k + x0M

.

SquareProductConjecture

Given sequences 8ak<
k�1
¥ � 8akHzL<

k�1
¥  and 8bk<

k�1
¥ � 8bkHzL<

k�1
¥  of complex-valued 

functions analytic on domains Y and W, respectively, for which the infinite 

continued fraction K
k=1

¥

Hak �bkL converges in C Ü 8¥<,

ä
k�1

{
K
j=k

¥ a j

b j

2

� B{-1
2 K

k=1

¥ ak

bk

- K
k=1

{-1 ak

bk

2

.

Here, B{-1 refers the terms of the three-term recurrence relation

Bm � bm Bm-1 + am Bm-2,

B-1 � 0, B0 � 1, satisfied by the finite convergents of K
k=1

¥

Hak �bkL.

StablePolynomialCriteria
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Let the complex polynomial of degree n

pnHzL � zn + â
k=0

n-1

ak z
k

be stable (meaning for all roots zk it holds that ReHzkL < 0).

The polynomial pnHzL is stable if and only if

tnHzL �
Ú

k=0

n�2
ReIan-H2 k+1LM z

n-H2 k+1L + i Ú
k=1

n�2
ImIan-H2 kLM z

n-H2 kL

z
n + i Ú

k=0

n�2
ImIan-H2 k+1LM z

n-H2 k+1L + Ú
k=1

n�2
ReIan-H2 kLM z

n-H2 kL

can be written in the form

tnHzL � K
k=1

n 1

ä tk + dk z

where tk Î R and dk > 0 for all 1 £ k £ n.

StarDiscrepancyBoundsForFunctionsOfBoundedVariation

For a function f : @0, 1D ® R with bounded variation VH f L,

1

N
â
n�1

N

f HxnL - à
0

1

f HtL â t £ D
N

*
V H f L.

StarDiscrepancyOfARealSequence

Let E Ì @0, 1, Ω � 8xn<
n�1
N  a sequence of real numbers and define AHE; N; ΩL so 

that

A HE; N; ΩL � ð 8n : 1 £ n £ N and fracHxnL Î E<,

where ð A denotes the number of elements of A for all sets A and fracHyL 

denotes the fractional part of the element y for all y.

Given a sequence 8xn<
n�1
N  of real numbers with fractional parts 

fracHx1L, fracHx2L, … , fracHxNL ordered increasingly by magnitude, the star 

discrepancy D
N

*  associated with the sequence is defined to be

D
N

* � max
i�1,2,… ,N

max
i

N - fracHxiL
,

i - 1

N - fracHxiL
.

SternStolzTheorem
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Let

Ξ � b0 + K
n=1

¥ 1

bn

be a regular continued fraction with bn Î C and An � Bn the sequence of its 

convergents.  Then if Ún=1
¥  bn¤ < ¥,

1. the continued fraction Ξ diverges generally.

2. the sequences 8A2 n+m<n and 8B2 n+m<n converge absolutely to finite values Am 

and Bm, respectively (for m � 0, 1).

3. A1 B0 - A0 B1 � 1.

StieltjesMomentProblem
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The Stieltjes moment problem, investigated as part of Stieltjes’ 1894 exposition 

on continued fractions, seeks to determine necessary and sufficient conditions 

for a sequence 8mn< of real numbers to be of the form

mn � à
0

¥

x
n

â Μ HxL

for some measure Μ defined on @0, ¥. Originating as part of an investigation on 

relationships between J-fractions, S-fractions, and infinite series, Stieltjes 

himself gave a necessary and sufficient condition for the existence of a solution. 

In the decades since, this problem has been extended and analyzed by many 

authors, resulting in a variety of conditions for existence and uniqueness of 

solutions thereto.

Stieltjes’ original condition states that a solution 8mn< of the moment problem 

exists if and only if the Hankel determinants satisfy

m0 m1 º mn

m1 m2 º mn+1

» » ¸ »

mn mn+1 º m2 n

,

m1 m2 º mn+1

m2 m3 º mn+2

» » ¸ »

mn+1 mn+2 º m2 n+1

> 0

for all n � 0, 1, 2, … , though this says nothing about whether the solution is 

unique. Several other criteria quantify the uniqueness of solutions to the Stielt�

jes moment problem, e.g. Carleman’s condition which states that any solution 

8mn< will be unique provided that

â
n�1

¥

m
n

-H2 nL-1 � ¥.

Several other results related to continued fractions can be found in the work of 

Alkhiezer, e.g., who proves that precisely one solution 8mn< to the Stieltjes 

moment problem exists whenever 8mn< is defined in terms related to the ele�

ments of an S-fraction Ξ � Ξ HzL of the form

Ξ � a0 +
1

b1 z +
1

a1+
1

b2 z+º

and at least one of the series Ú
k�1
¥

ak, Ú
k�1
¥

bk diverges, a0 ³ 0, ak, bk Î Z
+, 

k � 1, 2, 3, … . Additional results concerning the Stieltjes moment problem can 

be found in the works of Bultheel et al. and van Assche, among others.

StieltjesRogersTheorem
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Let ΦHzL � 1 + Ún³1
¥ ΦnHzL z

n �n! be an exponential generating function satisfying a 

Stieltjes-Rogers addition formula with coefficients wn.  Let 

FHzL � 1 + Ún³1
¥ ΦnHzL z

n be the generating function corresponding to ΦHzL. Then

FHzL � K
n=1

¥ 1 - z cn

z
2

dn

where

cn � jH j, j + 1LHzL - jH j - 1, jLHzL

is a formal power series,

dn �
wn

wn-1

is a real number, and

jH j, kLHzL � k! z
k

jH jLHzL.

StrongBestRationalApproximation

A fraction p �q is called a strong best rational approximation of the real number 

Ξ if

 q Ξ - p¤ <  s Ξ - r¤

for any integers r and s such that s £ q and p �q ¹ r � s.

Every strong best rational approximation p �q is also a best approximation of Ξ.

Let Ξ have the regular continued fraction expansion

Ξ � b0 + K
k=1

M 1

bk

(for M possibly ¥) with convergents An � Bn.

Then every convergent An � Bn is strong best rational approximation of Ξ.

SumOfRegularContinuedFractionPartialDenominators

Let 0 < Ξ < 1 be an irrational number with regular continued fraction expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then the following identity holds for almost all Ξ:

lim
n®¥

â
k=1

n

bk �
1 + oH1L

lnH2L
n lnHnL + Θn max

1£k£n

bk,

where Θn is a H0, 1L-valued random variable.

SumOfRegularContinuedFractionPartialDenominatorsDiver

gence
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SumOfRegularContinuedFractionPartialDenominatorsDiver

gence

Let 0 < Ξ < 1 be an irrational number with the regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then the following identity holds for almost all Ξ and any 0 £ ¶ < 1:

lim
n®¥

Ú
k=1

n

bk

n ln
¶HnL

� ¥.

SumOfRegularContinuedFractionPartialDenominatorsLimSu

p

Let 0 < Ξ < 1 be an irrational number with the regular continued fraction 

expansion

Ξ � b0 + K
k=1

¥ 1

bk

.

Then the following identity holds for almost all Ξ:

lim sup
n®¥

1

dHnL
â
k=1

n

bk �
1

lnH2L
,

where

dHnL � ΚHnL ln
2HΚHnLL expIΚHnL ln

2HΚHnLLM

and

ΚHnL � exp 2 W

1

2
lnHnL .

SumOfRestrictedDenominatorContinuedFractions
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Let Fk be the set of all infinite regular continued fractions with partial denomina�

tors between 1 and k:

Fk � Ξ : Ξ � K
j=1

¥ 1

b j

í b j Î Z
+ í 1 £ b j £ k .

Then the following identities hold for sums of elements of Fk:

F3 + F4 � R mod 1

F2 + F7 � R mod 1

F2 + F2 + F4 � R mod 1

F2 + F3 + F3 � R mod 1.

SzaszContinuedFractionConvergence

Let

Ξ � K
n=1

¥ an

1

be a generalized continued fraction,

xn �  an¤

yn �  an - ReHanL¤

s � Ún=1
¥

xn, and t � Ún=1
¥

yn. Given s converges and t £ 2, then Ξ converges.

TauberianTheoremForGrommerFractions

If for some R > 0 a Grommer fraction Ξ converges for all  z¤ ³ R, then the power 

series P HzL � Ún�0
¥

cn z
-n-1 associated with Ξ also converges for all  z¤ ³ R.

TauFractionsHaveBothRepresentationAndApproximationPr

operties
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A continued fraction that represents uniquely all real numbers so that the finite 

continued fraction represents the elements of an algebraic number field, and 

conversely, every element of the number field is represented by a finite contin�

ued fraction is said to have the representation property.

A number field is said to have the approximation property if for every 

“irrational” Α,

Α -
P

Q

<
1

k Q
2

is satisfied by infinitely many rational elements P �Q of the number field and k 

is a positive fixed constant.

The algebraic number field generated by Φ has both the reprsentation and 

approximation properties.  The elements of this number field have the form

a + b Φ

c + d Φ

for a, b, c, and d integers and c, d not both 0.  The associated continued frac�

tions, known as Τ-fractions, have the form

r0 +
¶1

r1 Φ +

¶2

r2 Φ +
…

where ¶1 � ±1, r0 is any integer, and the other ri are positive integers.  The 

representation is unique as long as the rule that if r1 Φ + ¶1 < 1, then ri+1 ³ 2 is 

observed.

TechnicalLemmaForLimitPeriodicContinuedFractions1

Let 8dn<, 8rn< be sequences of positive numbers. Then the inequality 

rn-1 - rn ³ 2 dn + 2 rn rn-1 is satisfied by

rn �

1- Β

2 H2 n+1L
for dn � 1- Β2

4 I4 n
2-1M

, 0 £ Β £ 1, n ³ 1

d

n
Α

for dn � d

2 n
Α+1

, Α > 1, â > 0, Hn - 1LΑ HΑ - 1L > 2 dn

3 r
n+1

1-r
for dn � r

n, 0 < r < 1, I1 - r
2M > 18 r

n+1.

TechnicalLemmaForLimitPeriodicContinuedFractions2
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If the limit periodic continued fraction Ξ � KHbn �1L � @0; b1, b2, … D is such that 

¢bn - J-
1

4
N¦ £

1

4 I4 n
2-1M

 for all n � 1, 2, …  and if dn satisfies one of the conditions

dn �

1- Β2

4 I4 n
2-1M

for 0 £ Β £ 1, n ³ 1

d

2 n
Α+1

for Α > 1, d > 0, Hn - 1LΑ HΑ - 1L > 2 dn

r
n for 0 < r < 1, I1 - r

2M > 18 r
n+1,

then

¡ f
k

HnL
- gk¥ £ rn,

where f
k

HnL � @0; bn+1, bn+2, … , bn+kD, gk � 0; -
1

4
, -

1

4
, … , -

1

4

k terms

, and where rn 

satisfies

rn �

1- Β

2 H2 n+1L
for dn � 1- Β2

4 I4 n
2-1M

, 0 £ Β £ 1, n ³ 1

d

n
Α

for dn � d

2 n
Α+1

, Α > 1, d > 0, Hn - 1LΑ HΑ - 1L > 2 dn

3 r
n+1

1-r
for 0 dn � r

n, 0 < r < 1, I1 - r
2M > 18 r

n+1.

TechnicalLemmaForLimitPeriodicContinuedFractions3

Suppose that Ξ � KHbn �1L � @0; b1, b2, … D is a limit periodic continued fraction 

for which ¢bn - J-
1

4
N¦ £

1

4 I4 n
2-1M

 and suppose that the values dn satisfy one of the 

conditions

dn �

1- Β2

4 I4 n
2-1M

for 0 £ Β £ 1, n ³ 1

d

2 n
Α+1

for Α > 1, d > 0, Hn - 1LΑ HΑ - 1L > 2 dn

r
n for 0 < r < 1, I1 - r

2M > 18 r
n+1,

Then

1 -

-
1

2

f
HnL

£
4 dn+1 + 2 rn+1

1 - 4 dn+1

,

where f
HnL � @0; bn+1, bn+2, … D and where

rn �

1- Β

2 H2 n+1L
for dn � 1- Β2

4 I4 n
2-1M

, 0 £ Β £ 1, n ³ 1

d

n
Α

for dn � d

2 n
Α+1

, Α > 1, d > 0, Hn - 1LΑ HΑ - 1L > 2 dn

3 r
n+1

1-r
for 0 dn � r

n, 0 < r < 1, I1 - r
2M > 18 r

n+1.

TechnicalLemmaForMeromorphicExtensionOfJFractions1
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TechnicalLemmaForMeromorphicExtensionOfJFractions1

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose without loss of general�

ity that lim an � 1 �4, lim bn � 0. For notational convenience, let u j and v j be the 

related terms defined so that u j � 2 b j, j ³ 0, and v j � 1 - 4 a j, j ³ 1, with v0 � 0. 

Also, for natural numbers j, n, r, k + 1 Î Z
+ and for complex Ω Î C with w � Ω2, 

define the terms ck, j HΩL, S
k

HnL HΩL to be

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM for j, k ³ -1

and

S
k

HnL HΩL � 1 - w
n-k

+ â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL I1 - w

n- jrM,

respectively, where ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. If 

Cn HΩL, Dn HΩL are terms which satisfy the recursions C0 HΩL � D-1 HΩL � 0, 

C1 HΩL � D0 HΩL � 1 - w, and

Cn+1 HΩL - Cn HΩL � w HCn HΩL - Cn-1 HΩLL + un Ω Cn HΩL + vn w Cn-1HΩL, for n ³ 1

Dn+1 HΩL - Dn HΩL � w HDn HΩL - Dn-1 HΩLL + un Ω Dn HΩL + vn w Dn-1HΩL, for n ³ 0,

then for all n ³ 1, Cn HΩL � S0
HnL HΩL and for all n ³ 0, Dn HΩL � S-1

HnL HΩL.

TechnicalLemmaForMeromorphicExtensionOfJFractions2

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

For an arbitrary complex number Ω Î C, let w � Ω2, and for natural numbers 

n, r, k + 1 Î Z
+, define the terms ck, j HΩL, S

k,r

HnL HΩL to be

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

and

S
k,r

HnL HΩL � â
j�k+1

n-r

ck, j HΩL S j,r-1
HnL HΩL for r ³ 1, k ³ -1, n > k + r,

respectively, where S
k,0

HnL � 1 - w
n-k for n > k ³ -1 and where 

ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Under these hypotheses:

1. If  Ω¤ £ 1, Ω ¹ ± 1, r ³ 1, k ³ -1, and n > k + r, then

¡S
k,r

HnLHΩL¥ £ 2  1 - w¤-r
Ρk H1L Ρk+1 H1L ºΡk+r-1 H1L,

where Ρk HRL � Ú
j�k+1
¥ I¡u j¥ R

1�2 I1 + R
j-kM + ¡v j¥ IR + R

j-kMM for u j � 2 b j, j ³ 0, and 

v j � 1 - 4 a j, j ³ 1, with v0 � 0.

2. For each k ³ -1, r ³ 1, the r-fold series Sk,r defined by

Sk,r HΩL � â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL

converges absolutely and uniformly on compact subsets of  Ω¤ £ 1, Ω ¹ ± 1, and 

satisfies

¡Sk,rHΩL¥ £  1 - w¤-r
Ρk H1L Ρk+1 H1L ºΡk+r-1 H1L

for  Ω¤ £ 1, Ω ¹ ± 1. Therefore, Sk,r is holomorphic for  Ω¤ < 1, is continuous, and 

satisfies Sk,0 HΩL � 1 and, for r ³ 1, Sk,r HΩL � Ú
j�k+1
¥

ck, j HΩL S j,r-1 HΩL.

3. For each k ³ -1, SkHΩL converges uniformly and absolutely on compact 

subsets of  Ω¤ £ 1, Ω ¹ ± 1 where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL.

Therefore, Sk is holomorphic for  Ω¤ < 1, is continuous, and satisfies 

Sk HΩL � Úr�0
¥

Sk,r HΩL.

4. For each k ³ -1, r ³ 0, 0 < t < 1,

lim
n®¥

S
k,r

HnL HΩL � Sk,r HΩL

and

lim
n®¥

S
k

HnL HΩL � Sk HΩL

where

S
k

HnL HΩL � 1 - w
n-k

+ â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL I1 - w

n- jrM.
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

For an arbitrary complex number Ω Î C, let w � Ω2, and for natural numbers 

n, r, k + 1 Î Z
+, define the terms ck, j HΩL, S

k,r

HnL HΩL to be

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

and

S
k,r

HnL HΩL � â
j�k+1

n-r

ck, j HΩL S j,r-1
HnL HΩL for r ³ 1, k ³ -1, n > k + r,

respectively, where S
k,0

HnL � 1 - w
n-k for n > k ³ -1 and where 

ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Under these hypotheses:

1. If  Ω¤ £ 1, Ω ¹ ± 1, r ³ 1, k ³ -1, and n > k + r, then

¡S
k,r

HnLHΩL¥ £ 2  1 - w¤-r
Ρk H1L Ρk+1 H1L ºΡk+r-1 H1L,

where Ρk HRL � Ú
j�k+1
¥ I¡u j¥ R

1�2 I1 + R
j-kM + ¡v j¥ IR + R

j-kMM for u j � 2 b j, j ³ 0, and 

v j � 1 - 4 a j, j ³ 1, with v0 � 0.

2. For each k ³ -1, r ³ 1, the r-fold series Sk,r defined by

Sk,r HΩL � â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL

converges absolutely and uniformly on compact subsets of  Ω¤ £ 1, Ω ¹ ± 1, and 

satisfies

¡Sk,rHΩL¥ £  1 - w¤-r
Ρk H1L Ρk+1 H1L ºΡk+r-1 H1L

for  Ω¤ £ 1, Ω ¹ ± 1. Therefore, Sk,r is holomorphic for  Ω¤ < 1, is continuous, and 

satisfies Sk,0 HΩL � 1 and, for r ³ 1, Sk,r HΩL � Ú
j�k+1
¥

ck, j HΩL S j,r-1 HΩL.

3. For each k ³ -1, SkHΩL converges uniformly and absolutely on compact 

subsets of  Ω¤ £ 1, Ω ¹ ± 1 where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL.

Therefore, Sk is holomorphic for  Ω¤ < 1, is continuous, and satisfies 

Sk HΩL � Úr�0
¥

Sk,r HΩL.

4. For each k ³ -1, r ³ 0, 0 < t < 1,

lim
n®¥

S
k,r

HnL HΩL � Sk,r HΩL

and

lim
n®¥

S
k

HnL HΩL � Sk HΩL

where

S
k

HnL HΩL � 1 - w
n-k

+ â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL I1 - w

n- jrM.
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥

j

a j - 1

4
+ ¡b j¥ < ¥.

Under these hypotheses and for Ω Î C arbitrary, it follows that:

1. For each k ³ -1, r > 0, the r-fold series Sk,r defined by

Sk,r HΩL � â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL

converges absolutely and uniformly for  Ω¤ £ 1 and satisfies 

¡Sk,rHΩL¥ £ Σk Σk+1 ºΣk+r-1 for  Ω¤ £ 1, where

Σk � â
j�k+1

¥

IH j - kL ¡u j¥ + H j - k - 1L ¡v j¥M,

u j � 2 b j for j ³ 0, and v j � 1 - 4 a j for j ³ 1. Hence, Sk,r is continuous for  Ω¤ £ 1 

and satisfies Sk,0 HΩL � 1 and, for r ³ 1, Sk,r HΩL � Ú
j�k+1
¥

ck, j HΩL S j,r-1 HΩL. Here,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition.

2. For each k ³ -1, Sk converges absolutely and uniformly for all  Ω¤ £ 1 where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL.

3. For each k ³ -1, S
k

HnL
 satisfies S

k

HnL H±1L � 0 and

lim
n®¥

C lim
Ω®±1

S
k

HnL HΩL � H1 - ΩLG �n � Sk H±1L

where for w � Ω2,

S
k

HnL HΩL � 1 - w
n-k

+ â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL I1 - w

n- jrM.

TechnicalLemmaForMeromorphicExtensionOfJFractions4
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2. Under 

these hypotheses, the following results hold:

1. For every k ³ -1, limn®¥ X
k

HnL HΩL � Sk HΩL holds uniformly on compact subsets 

of  Ω¤ £ 1, Ω ¹ ± 1, where for n > k ³ -1

X
k

HnL HΩL � 1 + â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

where ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition, and where

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM.

2. If in addition to the conditions in (1.) above Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥, then 

X
k

HnL HΩL ® Sk HΩL uniformly on  Ω¤ £ 1 as n ® ¥.

3. For fixed k ³ -1, S
k

HnL HΩL � Sk HΩL - w
n-k

SkHΩL + O H1L on  Ω¤ � 1 as n ® ¥ 

whenever the conditions in (2.) are met. Here,

S
k

HnL HΩL � 1 - w
n-k

+ â
r�1

n-k-1

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL I1 - w

n- jrM.

4. For fixed k ³ -1 and for each Ω satisfying  Ω¤ � 1, Ω ¹ ± 1, 

L HΩL � limn®¥ S
k

HnL HΩL exists. Moreover, L HΩL � Sk HΩL if and only if SkHΩL � 0.

TechnicalLemmaForMeromorphicExtensionOfJFractions5
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

for some R > 1. Furthermore, let Ω Î C be an arbitrary complex number with 

w � Ω2 and for notational convenience, let u j � 2 b j for j ³ 0 and let 

v j � 1 - 4 a j for j ³ 1. Then the following results hold:

1. For each k ³ -1 and r > 0, Sk,r converges absolutely and uniformly, and for 

 Ω¤ £ R
1�2 satisfies

¡Sk,rHΩL¥ £ HR - 1L-r
Ρk HRL Ρk+1 HRL ºΡk+r-1 HRL.

Here,

Sk,r HΩL � â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition, and

Ρk HRL � â
j�k+1

¥

I¡u j¥ R
1�2 I1 + R

j-kM + ¡v j¥ IR + R
j-kMM.

In particular, for all k ³ -1 and r > 0, Sk,r is holomorphic for  Ω¤ < R
1�2, is continu�

ous for  Ω¤ £ R
1�2, and satisfies Sk,0 HΩL � 1 and, for r ³ 1, 

Sk,r HΩL � Ú
j�k+1
¥

ck, j HΩL S j,r-1 HΩL for  Ω¤ £ R
1�2.

2. For each k ³ -1, the function SkHΩL defined by

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL

converges absolutely and uniformly for  Ω¤ £ R
1�2. In particular, for all k ³ -1, Sk 

is holomorphic for  Ω¤ < R
1�2, is continuous for  Ω¤ £ R

1�2, and satisfies 

Sk HΩL � Úr�0
¥

Sk,r HΩL for  Ω¤ £ R
1�2.

TechnicalLemmaForMeromorphicExtensionOfJFractions6
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0. Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2 

and for notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for 

j ³ 1. Let C, D be functions defined such that C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Further, define 

Cn HΩL, Dn HΩL to be the functions which satisfy the recursions 

C0 HΩL � D-1 HΩL � 0, C1 HΩL � D0 HΩL � 1 - w,

Cn+1 HΩL - Cn HΩL � w HCn HΩL - Cn-1 HΩLL + un Ω Cn HΩL + vn w Cn-1 HΩL, n ³ 1,

Dn+1 HΩL - Dn HΩL � w HDn HΩL - Dn-1 HΩLL + un Ω Dn HΩL + vn w Dn-1 HΩL, n ³ 0.

Under these hypotheses and for every k ³ 1, the identity

C HΩL Dk HΩL - D HΩL Ck HΩL � Sk HΩL w
k H1 - wL ä

j�1

k

I1 - v jM

holds under the following conditions:

1. For  Ω¤ £ R
1�2 if

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

for some R > 1.

2. For  Ω¤ £ 1, Ω ¹ ± 1 if

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

3. For  Ω¤ £ 1 if

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥.

In each of the above cases, the functions CHΩL, DHΩL have no common zeros.

TexanTheorem
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Let Ξ be the positive number 0 < Ξ < 1 with regular continued fraction expansion

Ξ � K
j=1

¥ 1

b j

with a j Î A where A is a finite subset of positive integers.  Let D HAL be the 

Hausdorff dimension of all Ξ for a given set A.  Let D be the set of all possible 

values of DHAL for all possible A.  Then the Texan theorem (originally a conjec�

ture but subsequently proven) states that D is a dense subset of @0, 1D.

TheoremForConvergentSubsequenceForPadeTableRowsOf

FunctionsWithFinitePoles

Let f  be a meromorphic function, and DHmL be the largest complex disk where f  

has less than or equal to m poles.  Let Tm,n be the m th row Padé  approximants, 

Rm be the radius of DHmL, a be an element of C - 0, Vm be the poles of f  in 

DHmL, and K any compact set in DHmL disjoint from Vm.  Then Rm � ¥ and there 

is a subsequence pi such that for any K, Tm,pn
 converges uniformly on K.

TheoremForConvergentSubsequenceOfBoundedRowsOfPa

deTableForEntireFunctions

Let f  be an entire function set, and Λ be the order of f .  Let Tm,n be the m th 

row Padé  approximants, and K be any compact set.  Then given 

H-1 + mL m Λ < 2, there is a subsequence pi such that for any K, Tm,pn
 converges 

uniformly on K.

TheoremForMeromorphicExtensionOfGeneralAnalyticFract

ions1

Let FHzL be a general analytic limit periodic continued fraction of the form

F HzL �
1

Λ HzL + b0 HzL -
a1HzL

Λ HzL+b1 HzL-
a2HzL

Λ HzL+b2 HzL-
a
3

HzL

¸

where an HzL T 0, bn-1HzL and ΛHzL are holomorphic functions of z in a region 

G Ì C for n ³ 1, and where limn®¥ an HzL � 1 �4, limn®¥ bn HzL � 0 hold uniformly 

on each compact subset of G. Assume further that the partial quotients of F 

satisfy

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M < ¥

uniformly on compact subsets of G, that G* is defined so that G* � G �S where 

S � 8z Î G : Λ HzL Î @-1, 1D<, and that the region Æ ¹ G0 Ì G
* is such that

Λ IG0 Ü IG0 Ý SMM Ì Y

where G0 denotes the closure of G0 in C and where Y � C
* Ü U or Y � C

* Ü L 

for C* � C � @-1, 1D and for U, respectively L, defined to be the upper, respec�

tively lower, boundary of the cut @-1, 1D of C* considered as disjoint subsets of 

C
** where C** is defined to be the complete 2-sheeted Riemannian surface 

obtained by analytic extension of Ω from C* across @-1, 1D into a second copy of 

C
*. Under this construction, the following claims hold:

1. Let A
`

HzL � 2 Ω
` HzL C Hz, Ω

` HzLL, B
`

HzL � D Hz, Ω
` HzLL be functions defined in terms 

of C Hz, ΩL � C HΩL � S0 HΩL, D Hz, ΩL � D HΩL � S-1 HΩL, where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Then:

(a) The series for A
`

HzL and B
`

HzL converge uniformly and absolutely on compact 

subsets of G0 Ü IG0 Ý SM.

(b) The functions A
`

HzL, B
`

HzL are holomorphic on G0 and can be extended 

continuously onto G0 Ü IG0 Ý SM where the extensions have no common zeros 

there.

(c) If B T 0 on G0, then F converges uniformly on compact subsets of 

G0 � 9z Î G0 : B
`

HzL � 0= to A
`

HzL � B
`

HzL.

(d) If B
`

HzL º 0 on G0, then A
`

HzL ¹ 0 on G0 and so FHzL diverges to ¥ on G0.

2. For each fixed z Î S � Λ-1 @-1, 1D with Λ HzL ¹ ±1, the continued fraction 

representation of FHzL diverges. More precisely, if Ω
` � ãä J HzL for J HzL ¹ k Π a real 

number, k Î Z, and if

Mz HΖL � 2 IΩ
`

C Hz, Ω
` L - Ζ Ω

` -1
C Iz, Ω

` -1MM ID Hz, Ω
` L - Ζ D Iz, Ω

` -1MM
-1

denotes a Möbius transform in Ζ, then the nth approximant of F at z equals 

MzIãä 2 Hn+1L J HzLM + OH1L as n ® ¥. Thus, for fixed z, the nth approximant of 

A HzL � B HzL of F lie on the image of the unit circle under MzHΖL which is a straight 

line if and only if ¡DIz, ãä J HzLM¥ � ¡DIz, ã-ä J HzLM¥.

3. If additionally Új�1
¥

jI¡a j HzL - 1�4¥ + ¡b jHzL¥M < ¥ uniformly on each compact 

subset of G and if G0 is a subset of Z where Z � C Ü U Ü 8-1, 1< or 

Z � C Ü L Ü 8-1, 1<, then the result of (a.) above holds for G0. Moreover, for 

each z Î S with Λ HzL � ±1, F HzL � ±2 C Hz, ±1L � D Hz, ±1L where C Hz, ±1L, 
DH±1, zL do not vanish simultaneously.
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Let FHzL be a general analytic limit periodic continued fraction of the form

F HzL �
1

Λ HzL + b0 HzL -
a1HzL

Λ HzL+b1 HzL-
a2HzL

Λ HzL+b2 HzL-
a
3

HzL

¸

where an HzL T 0, bn-1HzL and ΛHzL are holomorphic functions of z in a region 

G Ì C for n ³ 1, and where limn®¥ an HzL � 1 �4, limn®¥ bn HzL � 0 hold uniformly 

on each compact subset of G. Assume further that the partial quotients of F 

satisfy

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M < ¥

uniformly on compact subsets of G, that G* is defined so that G* � G �S where 

S � 8z Î G : Λ HzL Î @-1, 1D<, and that the region Æ ¹ G0 Ì G
* is such that

Λ IG0 Ü IG0 Ý SMM Ì Y

where G0 denotes the closure of G0 in C and where Y � C
* Ü U or Y � C

* Ü L 

for C* � C � @-1, 1D and for U, respectively L, defined to be the upper, respec�

tively lower, boundary of the cut @-1, 1D of C* considered as disjoint subsets of 

C
** where C** is defined to be the complete 2-sheeted Riemannian surface 

obtained by analytic extension of Ω from C* across @-1, 1D into a second copy of 

C
*. Under this construction, the following claims hold:

1. Let A
`

HzL � 2 Ω
` HzL C Hz, Ω

` HzLL, B
`

HzL � D Hz, Ω
` HzLL be functions defined in terms 

of C Hz, ΩL � C HΩL � S0 HΩL, D Hz, ΩL � D HΩL � S-1 HΩL, where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Then:

(a) The series for A
`

HzL and B
`

HzL converge uniformly and absolutely on compact 

subsets of G0 Ü IG0 Ý SM.

(b) The functions A
`

HzL, B
`

HzL are holomorphic on G0 and can be extended 

continuously onto G0 Ü IG0 Ý SM where the extensions have no common zeros 

there.

(c) If B T 0 on G0, then F converges uniformly on compact subsets of 

G0 � 9z Î G0 : B
`

HzL � 0= to A
`

HzL � B
`

HzL.

(d) If B
`

HzL º 0 on G0, then A
`

HzL ¹ 0 on G0 and so FHzL diverges to ¥ on G0.

2. For each fixed z Î S � Λ-1 @-1, 1D with Λ HzL ¹ ±1, the continued fraction 

representation of FHzL diverges. More precisely, if Ω
` � ãä J HzL for J HzL ¹ k Π a real 

number, k Î Z, and if

Mz HΖL � 2 IΩ
`

C Hz, Ω
` L - Ζ Ω

` -1
C Iz, Ω

` -1MM ID Hz, Ω
` L - Ζ D Iz, Ω

` -1MM
-1

denotes a Möbius transform in Ζ, then the nth approximant of F at z equals 

MzIãä 2 Hn+1L J HzLM + OH1L as n ® ¥. Thus, for fixed z, the nth approximant of 

A HzL � B HzL of F lie on the image of the unit circle under MzHΖL which is a straight 

line if and only if ¡DIz, ãä J HzLM¥ � ¡DIz, ã-ä J HzLM¥.

3. If additionally Új�1
¥

jI¡a j HzL - 1�4¥ + ¡b jHzL¥M < ¥ uniformly on each compact 

subset of G and if G0 is a subset of Z where Z � C Ü U Ü 8-1, 1< or 

Z � C Ü L Ü 8-1, 1<, then the result of (a.) above holds for G0. Moreover, for 

each z Î S with Λ HzL � ±1, F HzL � ±2 C Hz, ±1L � D Hz, ±1L where C Hz, ±1L, 
DH±1, zL do not vanish simultaneously.

TheoremForMeromorphicExtensionOfGeneralAnalyticFract

ions2
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TheoremForMeromorphicExtensionOfGeneralAnalyticFract

ions2

Let FHzL be a general analytic limit periodic continued fraction of the form

F HzL �
1

Λ HzL + b0 HzL -
a1HzL

Λ HzL+b1 HzL-
a2HzL

Λ HzL+b2 HzL-
a
3

HzL

¸

where an HzL T 0, bn-1HzL and ΛHzL are holomorphic functions of z in a region 

G Ì C for n ³ 1, and where limn®¥ an HzL � 1 �4, limn®¥ bn HzL � 0 hold uniformly 

on each compact subset of G. Assume further that the partial quotients of F 

satisfy

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M R
j

< ¥

uniformly on compact subsets of G for some R > 1, that G* � G �S where 

S � 8z Î G : Λ HzL Î @-1, 1D<, and that G0
*  is a fixed component of G*. Next, define 

Ω
` HzL on each component of G* so that Ω

` HzL � Ω HΛHzLL where 

Ω HzL � z - Iz2 - 1M1�2
 with roots chosen positive for z > 1, z Î C � @-1, 1D, and let 

G
** be defined to be the 2-sheeted Riemannian surface of Ω

` HzL over G obtained 

by analytic extension of Ω
`
 from each component of G* across S into a second 

copy of G with G0
** the smallest subregion of G** with G0

* Ì G0
** such that no 

point in G0
** lies above SHRL but that the boundary ¶R G0

** � ¶G0
** Ý G

** of G0
*  lies 

above SHRL. Here, for R > 1, S HRL � Λ-1 HEHRLL Ì G where EHRL denotes the ellipse

EHRL � z Î C : IReHzL � IR1�2
+ R

-1�2MM2
+ IImHzL � IR1�2

- R
-1�2MM2 �

1

4
.

From this, the following hold:

1. Let A
`

HzL � 2 Ω
` HzL C Hz, Ω

` HzLL, B
`

HzL � D Hz, Ω
` HzLL be functions defined in terms 

of C Hz, ΩL � C HΩL � S0 HΩL, D Hz, ΩL � D HΩL � S-1 HΩL, where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Then:

(a) The explicit series representations for A
`
, B

`
 converge absolutely and uni�

formly on compact subsets of G0
** Ü ¶R G0

**.

(b) A
`
 and B

`
 can be extended analytically from G0

*  across S into G0
* *.

(c) A
`
 and B

`
 and can be extended continuously onto G0

** Ü ¶R G0
** and the exten�

sions have no zeros there.

2. The branch points of Ω
` HzL are the algebraic first order branch points for the 

extended meromorphic function F HzL � A
`

HzL � B
`

HzL proved B
`

T 0 on G0
* .

3. At each z0 Î S with Λ Hz0L � ±1 of even order, A
`
 and B

`
 consist of two separate 

holomorphic branches in a neighborhood around z0.

4. If additionally

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M R
j

< ¥

uniformly on compact subsets of G for all R > 1, then for each component of G*, 

A
`
 and B

`
 can be extended analytically across S into the whole Riemannian 

surface G**. Moreover, if B
`

T 0, then the extended F � A
`

� B
`
 is meromorphic on 

G
**.
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Let FHzL be a general analytic limit periodic continued fraction of the form

F HzL �
1

Λ HzL + b0 HzL -
a1HzL

Λ HzL+b1 HzL-
a2HzL

Λ HzL+b2 HzL-
a
3

HzL

¸

where an HzL T 0, bn-1HzL and ΛHzL are holomorphic functions of z in a region 

G Ì C for n ³ 1, and where limn®¥ an HzL � 1 �4, limn®¥ bn HzL � 0 hold uniformly 

on each compact subset of G. Assume further that the partial quotients of F 

satisfy

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M R
j

< ¥

uniformly on compact subsets of G for some R > 1, that G* � G �S where 

S � 8z Î G : Λ HzL Î @-1, 1D<, and that G0
*  is a fixed component of G*. Next, define 

Ω
` HzL on each component of G* so that Ω

` HzL � Ω HΛHzLL where 

Ω HzL � z - Iz2 - 1M1�2
 with roots chosen positive for z > 1, z Î C � @-1, 1D, and let 

G
** be defined to be the 2-sheeted Riemannian surface of Ω

` HzL over G obtained 

by analytic extension of Ω
`
 from each component of G* across S into a second 

copy of G with G0
** the smallest subregion of G** with G0

* Ì G0
** such that no 

point in G0
** lies above SHRL but that the boundary ¶R G0

** � ¶G0
** Ý G

** of G0
*  lies 

above SHRL. Here, for R > 1, S HRL � Λ-1 HEHRLL Ì G where EHRL denotes the ellipse

EHRL � z Î C : IReHzL � IR1�2
+ R

-1�2MM2
+ IImHzL � IR1�2

- R
-1�2MM2 �

1

4
.

From this, the following hold:

1. Let A
`

HzL � 2 Ω
` HzL C Hz, Ω

` HzLL, B
`

HzL � D Hz, Ω
` HzLL be functions defined in terms 

of C Hz, ΩL � C HΩL � S0 HΩL, D Hz, ΩL � D HΩL � S-1 HΩL, where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Then:

(a) The explicit series representations for A
`
, B

`
 converge absolutely and uni�

formly on compact subsets of G0
** Ü ¶R G0

**.

(b) A
`
 and B

`
 can be extended analytically from G0

*  across S into G0
* *.

(c) A
`
 and B

`
 and can be extended continuously onto G0

** Ü ¶R G0
** and the exten�

sions have no zeros there.

2. The branch points of Ω
` HzL are the algebraic first order branch points for the 

extended meromorphic function F HzL � A
`

HzL � B
`

HzL proved B
`

T 0 on G0
* .

3. At each z0 Î S with Λ Hz0L � ±1 of even order, A
`
 and B

`
 consist of two separate 

holomorphic branches in a neighborhood around z0.

4. If additionally

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M R
j

< ¥

uniformly on compact subsets of G for all R > 1, then for each component of G*, 

A
`
 and B

`
 can be extended analytically across S into the whole Riemannian 

surface G**. Moreover, if B
`

T 0, then the extended F � A
`

� B
`
 is meromorphic on 

G
**.

TheoremForMeromorphicExtensionOfGeneralAnalyticFract

ions3
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Let FHzL be a general analytic limit periodic continued fraction of the form

F HzL �
1

Λ HzL + b0 HzL -
a1HzL

Λ HzL+b1 HzL-
a2HzL

Λ HzL+b2 HzL-
a
3

HzL

¸

where an HzL T 0, bn-1HzL and ΛHzL are holomorphic functions of z in a region 

G Ì C for n ³ 1, and where limn®¥ an HzL � 1 �4, limn®¥ bn HzL � 0 hold uniformly 

on each compact subset of G. Assume further that the partial quotients of F 

satisfy

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M < ¥

uniformly on compact subsets of G, define G* � G �S where 

S � 8z Î G : Λ HzL Î @-1, 1D<, and define the transformation Ω
` HzL on each compo�

nent of G* so that Ω
` HzL � Ω HΛHzLL where Ω HzL � z - Iz2 - 1M1�2

 with roots chosen 

positive for z > 1, z Î C � @-1, 1D, and let G** be defined to be the 2-sheeted 

Riemannian surface of Ω
` HzL over G obtained by analytic extension of Ω

`
 from 

each component of G* across S into a second copy of G. Finally, let G1
*  be a 

fixed component of G*, G1
** a subregion of G**, and H1

** Ì G
** so that 

G1
*

G1
* * Ì H1

** Ì G
**, and suppose that

â
j�1

¥

I¡a j HzL - 1�4¥ + ¡b jHzL¥M  Ω` HzL¤ < ¥

uniformly on compact subsets of H1
** where Ω

`
 is assumed to have been 

extended analytically onto G** with  Ω` HzL¤ < 1 for z Î G
* and with Ω

` HzL ¹ ±1 for 

z Î H1
**. Under these hypotheses, the following results hold:

1. The explicit series representations for A
`

HzL and B
`

HzL converge absolutely and 

uniformly on compact subsets of H1
**.

2. A
`
 and B

`
 can be extended analytically from G1

*  across S into G1
**.

3. A
`
 and B

`
 can be extended continuously onto H1

* and the extensions have no 

common zeros there.

For the above, A
`

HzL � 2 Ω
` HzL C Hz, Ω

` HzLL, B
`

HzL � D Hz, Ω
` HzLL are functions defined 

in terms of C Hz, ΩL � C HΩL � S0 HΩL, D Hz, ΩL � D HΩL � S-1 HΩL, where

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition.

TheoremForMeromorphicExtensionOfJFractions1

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2 and for 

notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1. 

Finally, define the functions CHΩL, DHΩL to be C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. With these assumptions, 

the following claims hold:

1. Define the functions A+, A
-, B

+, B
- as follows: A+HxL � 2 ã-ä J

CIã-ä JM, 

A
-HxL � 2 ãä J

CIãä JM, B+HxL � DIã-ä JM, and B-HxL � DIãä JM. Then A+, A
-, B

+, B
- 

are continuous on H-1, 1L and for every x � cosHJL, J Î H0, ΠL, they satisfy

A
- HxL B

+ HxL - A
+ HxL B

- HxL � 4 ä I1 - x
2M1�2

ä
j�1

¥

I1 - v jM � 4 ä sin J ä
j�1

¥

I1 - v jM ¹ 0.

If additionally all an, bn in f HzL are real numbers, then A- HxL � A
+HxL ¹ 0 and 

B
- HxL � B

+HxL ¹ 0 for all x Î H-1, 1L.

2. For Λ Î C
* � C � @-1, 1D, let ΩHΛL denote the transformation

ΩHΛL �
1

2
IHΛ + 1L1�2

- HΛ - 1L1�2M2

with roots assumed to be positive for Λ > 1 and define functions A, B so that

A HΛL � 2 Ω HΛL C HΩHΛLL,

B HΛL � D HΩHΛLL.

Defined in this way:

(a) The functions A, B T 0 are holomorphic on C* Ü 8¥< and can thus be 

extended continuously onto C* Ü U Ü L where U, respectively L, denotes the 

upper, respectively lower, boundary of the cut @-1, 1D of C* considered as 

disjoint subsets of C** where C** is defined to be the complete 2-sheeted Rieman�

nian surface obtained by analytic extension of Ω from C* across @-1, 1D into a 

second copy of C*. In particular then, AHΛL and BHΛL approach continuous 

boundary values of A+ HΛL, B
+ HΛL, respectively A- HΛL, B

- HΛL if Λ Î C
* approaches 

x Î U, respectively x Î L.

(b) A and B do not vanish simultaneously on C* Ü U Ü L.

(c) The function f HΛL defined to be

f HΛL � lim
n®¥

An HΛL � Bn HΛL

for An � Bn the nth approximant of f HzL satisfies f HΛL � A HΛL � B HΛL uniformly on 

compact subsets of C* � 8Λ Î C
* : B HΛL � 0<.

3. For x � cos J, J Î H0, ΠL, the continued fraction f HxL diverges. More precisely, 

An HxL � BnHxL � MIã-ä 2 Hn+1L JM + OH1L holds uniformly on compact subsets of 

H-1, 1L as n ® ¥ where

M HΖL � HA
+ HΖL - Ζ A

- HΖLL � HB+ HΖL - Ζ B
- HΖLL

is a Möbius transformation. Thus, for fixed x Î H-1, 1L, all An HxL � Bn HxL lie 

asymptotically on the image of the unit circle under MHΖL which is a straight 

line if and only if  B+HxL¤ �  B-HxL¤.

4. If Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥ holds, then so does (1.) above. Moreover, A and 

B can be extended continuously from C* Ü U Ü L into ±1 and 

A HΛL, B HΛL ® A H±1L, B H±1L as Λ Î C
* Ü U Ü L ® ±1 where by definition 

A H±1L � ±2 C H±1L, B H±1L � D H±1L. Moreover, neither A H1L, B H1L nor 

A H-1L, B H-1L vanish simultaneously and

lim
n®¥

An H±1L � Bn H±1L � A H±1L � B H±1L.
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2 and for 

notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1. 

Finally, define the functions CHΩL, DHΩL to be C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. With these assumptions, 

the following claims hold:

1. Define the functions A+, A
-, B

+, B
- as follows: A+HxL � 2 ã-ä J

CIã-ä JM, 

A
-HxL � 2 ãä J

CIãä JM, B+HxL � DIã-ä JM, and B-HxL � DIãä JM. Then A+, A
-, B

+, B
- 

are continuous on H-1, 1L and for every x � cosHJL, J Î H0, ΠL, they satisfy

A
- HxL B

+ HxL - A
+ HxL B

- HxL � 4 ä I1 - x
2M1�2

ä
j�1

¥

I1 - v jM � 4 ä sin J ä
j�1

¥

I1 - v jM ¹ 0.

If additionally all an, bn in f HzL are real numbers, then A- HxL � A
+HxL ¹ 0 and 

B
- HxL � B

+HxL ¹ 0 for all x Î H-1, 1L.

2. For Λ Î C
* � C � @-1, 1D, let ΩHΛL denote the transformation

ΩHΛL �
1

2
IHΛ + 1L1�2

- HΛ - 1L1�2M2

with roots assumed to be positive for Λ > 1 and define functions A, B so that

A HΛL � 2 Ω HΛL C HΩHΛLL,

B HΛL � D HΩHΛLL.

Defined in this way:

(a) The functions A, B T 0 are holomorphic on C* Ü 8¥< and can thus be 

extended continuously onto C* Ü U Ü L where U, respectively L, denotes the 

upper, respectively lower, boundary of the cut @-1, 1D of C* considered as 

disjoint subsets of C** where C** is defined to be the complete 2-sheeted Rieman�

nian surface obtained by analytic extension of Ω from C* across @-1, 1D into a 

second copy of C*. In particular then, AHΛL and BHΛL approach continuous 

boundary values of A+ HΛL, B
+ HΛL, respectively A- HΛL, B

- HΛL if Λ Î C
* approaches 

x Î U, respectively x Î L.

(b) A and B do not vanish simultaneously on C* Ü U Ü L.

(c) The function f HΛL defined to be

f HΛL � lim
n®¥

An HΛL � Bn HΛL

for An � Bn the nth approximant of f HzL satisfies f HΛL � A HΛL � B HΛL uniformly on 

compact subsets of C* � 8Λ Î C
* : B HΛL � 0<.

3. For x � cos J, J Î H0, ΠL, the continued fraction f HxL diverges. More precisely, 

An HxL � BnHxL � MIã-ä 2 Hn+1L JM + OH1L holds uniformly on compact subsets of 

H-1, 1L as n ® ¥ where

M HΖL � HA
+ HΖL - Ζ A

- HΖLL � HB+ HΖL - Ζ B
- HΖLL

is a Möbius transformation. Thus, for fixed x Î H-1, 1L, all An HxL � Bn HxL lie 

asymptotically on the image of the unit circle under MHΖL which is a straight 

line if and only if  B+HxL¤ �  B-HxL¤.

4. If Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥ holds, then so does (1.) above. Moreover, A and 

B can be extended continuously from C* Ü U Ü L into ±1 and 

A HΛL, B HΛL ® A H±1L, B H±1L as Λ Î C
* Ü U Ü L ® ±1 where by definition 

A H±1L � ±2 C H±1L, B H±1L � D H±1L. Moreover, neither A H1L, B H1L nor 

A H-1L, B H-1L vanish simultaneously and

lim
n®¥

An H±1L � Bn H±1L � A H±1L � B H±1L.
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥.

Furthermore, let Ω Î C be an arbitrary complex number with w � Ω2 and for 

notational convenience, let u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1. 

Finally, define the functions CHΩL, DHΩL to be C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. With these assumptions, 

the following claims hold:

1. Define the functions A+, A
-, B

+, B
- as follows: A+HxL � 2 ã-ä J

CIã-ä JM, 

A
-HxL � 2 ãä J

CIãä JM, B+HxL � DIã-ä JM, and B-HxL � DIãä JM. Then A+, A
-, B

+, B
- 

are continuous on H-1, 1L and for every x � cosHJL, J Î H0, ΠL, they satisfy

A
- HxL B

+ HxL - A
+ HxL B

- HxL � 4 ä I1 - x
2M1�2

ä
j�1

¥

I1 - v jM � 4 ä sin J ä
j�1

¥

I1 - v jM ¹ 0.

If additionally all an, bn in f HzL are real numbers, then A- HxL � A
+HxL ¹ 0 and 

B
- HxL � B

+HxL ¹ 0 for all x Î H-1, 1L.

2. For Λ Î C
* � C � @-1, 1D, let ΩHΛL denote the transformation

ΩHΛL �
1

2
IHΛ + 1L1�2

- HΛ - 1L1�2M2

with roots assumed to be positive for Λ > 1 and define functions A, B so that

A HΛL � 2 Ω HΛL C HΩHΛLL,

B HΛL � D HΩHΛLL.

Defined in this way:

(a) The functions A, B T 0 are holomorphic on C* Ü 8¥< and can thus be 

extended continuously onto C* Ü U Ü L where U, respectively L, denotes the 

upper, respectively lower, boundary of the cut @-1, 1D of C* considered as 

disjoint subsets of C** where C** is defined to be the complete 2-sheeted Rieman�

nian surface obtained by analytic extension of Ω from C* across @-1, 1D into a 

second copy of C*. In particular then, AHΛL and BHΛL approach continuous 

boundary values of A+ HΛL, B
+ HΛL, respectively A- HΛL, B

- HΛL if Λ Î C
* approaches 

x Î U, respectively x Î L.

(b) A and B do not vanish simultaneously on C* Ü U Ü L.

(c) The function f HΛL defined to be

f HΛL � lim
n®¥

An HΛL � Bn HΛL

for An � Bn the nth approximant of f HzL satisfies f HΛL � A HΛL � B HΛL uniformly on 

compact subsets of C* � 8Λ Î C
* : B HΛL � 0<.

3. For x � cos J, J Î H0, ΠL, the continued fraction f HxL diverges. More precisely, 

An HxL � BnHxL � MIã-ä 2 Hn+1L JM + OH1L holds uniformly on compact subsets of 

H-1, 1L as n ® ¥ where

M HΖL � HA
+ HΖL - Ζ A

- HΖLL � HB+ HΖL - Ζ B
- HΖLL

is a Möbius transformation. Thus, for fixed x Î H-1, 1L, all An HxL � Bn HxL lie 

asymptotically on the image of the unit circle under MHΖL which is a straight 

line if and only if  B+HxL¤ �  B-HxL¤.

4. If Új�1
¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥ holds, then so does (1.) above. Moreover, A and 

B can be extended continuously from C* Ü U Ü L into ±1 and 

A HΛL, B HΛL ® A H±1L, B H±1L as Λ Î C
* Ü U Ü L ® ±1 where by definition 

A H±1L � ±2 C H±1L, B H±1L � D H±1L. Moreover, neither A H1L, B H1L nor 

A H-1L, B H-1L vanish simultaneously and

lim
n®¥

An H±1L � Bn H±1L � A H±1L � B H±1L.

TheoremForMeromorphicExtensionOfJFractions2

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

for some R > 1. Furthermore, let Ω Î C be an arbitrary complex number with 

w � Ω2 and for notational convenience, let u j � 2 b j for j ³ 0 and let 

v j � 1 - 4 a j for j ³ 1. Moreover, suppose the functions CHΩL, DHΩL are defined to 

be C HΩL � S0 HΩL, D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition, and suppose 

Λ Î C
* � C � @-1, 1D ΩHΛL denotes the transformation

ΩHΛL �
1

2
IHΛ + 1L1�2

- HΛ - 1L1�2M2

with roots assumed to be positive for Λ > 1. Under this construction, define the 

functions A, B so that

A HΛL � 2 Ω HΛL C HΩHΛLL,

B HΛL � D HΩHΛLL.

Then:

1. If U, respectively L, denotes the upper, respectively lower, boundary of the 

cut @-1, 1D of C* considered as disjoint subsets of C**, if C** is defined to be the 

complete 2-sheeted Riemannian surface obtained by analytic extension of Ω 

from C* across @-1, 1D into a second copy of C*, and if E HRL � 9 ΩHzL¤ � R
1�2= is 

the ellipse with explicit form

EHRL � z Î C : IReHzL � IR1�2
+ R

-1�2MM2
+ IImHzL � IR1�2

- R
-1�2MM2 �

1

4
.

then:

(a) The functions A and B can be extended analytically from C* across U and L 

onto a subregion  ΩHΛL¤ < R
1�2 of the region C** whose boundary  ΩHΛL¤ � R

1�2 on 

C
** lies above the ellipse EHRL.

(b) Onto the boundary  ΩHΛL¤ � R
1�2, A and B can be extended continuously.

(c) The foci z � ±1 of the ellipse EHRL are first order algebraic branched points 

for f HΛL � A HΛL � B HΛL.

(d) A and B have no common zeros in the extension  ΩHΛL¤ £ R
1�2.

2. If A
�
, B

�
 denote the functions resulting from extending A, B from Λ Î C

* across 

U or L into the point in C** lying above Λ. Then

A
�

HΛL B HΛL - A HΛL B
�

HΛL � 4 IΛ
2

- 1M1�2
ä
j�1

¥

I1 - v jM

for all Λ Î C
* satisfying R-1�2 £  ΩHΛL¤ £ R

1�2, where the roots of IΛ2 - 1M1�2
 are 

assumed positive for Λ > 1.

3. If

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

holds for all R > 1, then A and B can be extended analytically to functions A
�
, B

�
 

defined on the complete surface C** in such a way that these extensions satisfy

A
�

HΛL B HΛL - A HΛL B
�

HΛL � 4 IΛ
2

- 1M1�2
ä
j�1

¥

I1 - v jM

for all Λ Î C. In this case, f HzL is meromorphic on C**.
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Let f HzL be a J-fraction of the form
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a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , and suppose that lim an � 1 �4, 

lim bn � 0, and

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

for some R > 1. Furthermore, let Ω Î C be an arbitrary complex number with 

w � Ω2 and for notational convenience, let u j � 2 b j for j ³ 0 and let 

v j � 1 - 4 a j for j ³ 1. Moreover, suppose the functions CHΩL, DHΩL are defined to 
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¥

â
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j-kM + w v j I1 - w
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with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition, and suppose 
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* � C � @-1, 1D ΩHΛL denotes the transformation

ΩHΛL �
1

2
IHΛ + 1L1�2
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with roots assumed to be positive for Λ > 1. Under this construction, define the 

functions A, B so that

A HΛL � 2 Ω HΛL C HΩHΛLL,

B HΛL � D HΩHΛLL.

Then:

1. If U, respectively L, denotes the upper, respectively lower, boundary of the 

cut @-1, 1D of C* considered as disjoint subsets of C**, if C** is defined to be the 

complete 2-sheeted Riemannian surface obtained by analytic extension of Ω 

from C* across @-1, 1D into a second copy of C*, and if E HRL � 9 ΩHzL¤ � R
1�2= is 

the ellipse with explicit form

EHRL � z Î C : IReHzL � IR1�2
+ R

-1�2MM2
+ IImHzL � IR1�2

- R
-1�2MM2 �

1

4
.

then:

(a) The functions A and B can be extended analytically from C* across U and L 

onto a subregion  ΩHΛL¤ < R
1�2 of the region C** whose boundary  ΩHΛL¤ � R

1�2 on 

C
** lies above the ellipse EHRL.

(b) Onto the boundary  ΩHΛL¤ � R
1�2, A and B can be extended continuously.

(c) The foci z � ±1 of the ellipse EHRL are first order algebraic branched points 

for f HΛL � A HΛL � B HΛL.

(d) A and B have no common zeros in the extension  ΩHΛL¤ £ R
1�2.

2. If A
�
, B

�
 denote the functions resulting from extending A, B from Λ Î C

* across 

U or L into the point in C** lying above Λ. Then

A
�

HΛL B HΛL - A HΛL B
�

HΛL � 4 IΛ
2

- 1M1�2
ä
j�1

¥

I1 - v jM

for all Λ Î C
* satisfying R-1�2 £  ΩHΛL¤ £ R

1�2, where the roots of IΛ2 - 1M1�2
 are 

assumed positive for Λ > 1.

3. If

â
j�1

¥ a j - 1

4
+ ¡b j¥ R

j
< ¥

holds for all R > 1, then A and B can be extended analytically to functions A
�
, B

�
 

defined on the complete surface C** in such a way that these extensions satisfy

A
�

HΛL B HΛL - A HΛL B
�

HΛL � 4 IΛ
2

- 1M1�2
ä
j�1

¥

I1 - v jM

for all Λ Î C. In this case, f HzL is meromorphic on C**.
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TheoremForMeromorphicExtensionOfJFractions3

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , where lim an � 1 �4 and lim bn � 0 

hold, and where An HzL � Bn HzL denotes the nth approximant of f . Suppose, too, 

that an, bn satisfy

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥

and that D HΩL ¹ 0 for all  Ω¤ £ 1 where D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. If ΦHxL denotes the 

function

ΦHxL �
2

Π
I1 - x

2M1�2
ä
j�1

¥

I1 - v jM � B
+HxL B

-HxL

for x Î @-1, 1D with all roots nonnegative, then:

1. ΦHxL is continuous for all x Î @-1, 1D.

2. Φ HxL ¹ 0 for all x Î H-1, 1L and ΦH±1L � 0.

3. For all Λ Î C,

f HΛL � à
-1

1

Φ HxL HΛ - xL-1
â x.

4. If Γ is a large circle centered at z � 0, then

à
-1

1

BmHxL BnHxL ΦHxL â x �
1

2 Π ä
à

Γ

BmHΛL BnHΛL f HΛL â Λ � a0 a1 º am ∆m,n

for m, n ³ 0 where ∆ä, j denotes Kronecker’s delta.

TheoremForMeromorphicExtensionOfJFractions4
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , where lim an � 1 �4 and lim bn � 0 

hold. Suppose, too, that

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥,

and let Ω Î C be an arbitrary complex number with w � Ω2 where, for conve�

nience, the notation u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1 is adopted. 

Then:

1. For x Î H-1, 1L, f HΛL can be written as

f HΛL � à
-a

a

HΛ - xL-1
â Ψ HxL

for Λ Î C � @-a, aD, where Ψ is a real-valued nondecreasing function on @-a, aD 
normalized so that Ψ HxL � Ψ Hx + 0L for all x Î H-a, aL.

2. ΨHxL is differentiable and satisfies Ψ¢ HxL � Φ HxL where

ΦHxL �
2

Π
I1 - x

2M1�2
ä
j�1

¥

I1 - v jM � B
+HxL B

-HxL

for x Î @-1, 1D with all roots nonnegative. Here, B+, B
- are functions defined by 

the first substituting x � cos J, J Î H0, ΠL, and then defining B+HxL � DIã-ä JM and 

B
-HxL � DIãä JM where D � S-1 HΩL for

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM,

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition.

3. Ψ¢HxL � ΦHxL is continuous for all x Î H-1, 1L.

4. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then I1 - x
2M1�2

Φ HxL is bounded for all -1 < x < 1; equivalently, if x � cosHJL for 

J Î H0, ΠL, then ΦHcosHJLL sinHJL is bounded for 0 < J < Π.

TheoremForMeromorphicExtensionOfJFractions5

Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , where lim an � 1 �4 and lim bn � 0 

hold, and where An HzL � Bn HzL denotes the nth approximant of f . Suppose, too, 

that

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥,

let Ω Î C be an arbitrary complex number with w � Ω2 where, for convenience, 

the notation u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1 is adopted, and 

define Qn HΛL � Bn HΛL � Ha0 a1 º anL1�2 where, for each n ³ 1,

Ha0 a1 º anL1�2 � 2
-n ä

j�1

n

I1 - v jM

1�2

is chosen in 8z Î C : arg HzL Î @-Π �2, Π �2D<. Given this, the following results hold:

1. Define for Λ Î C � @-1, 1D the transformation ΩHΛL to be

ΩHΛL �
1

2
IHΛ + 1L1�2

- HΛ - 1L1�2M2

with roots assumed positive for Λ > 1. Moreover, let

EHRL � z Î C : IReHzL � IR1�2
+ R

-1�2MM2
+ IImHzL � IR1�2

- R
-1�2MM2 �

1

4
.

and define the function B HΛL � D HΩHΛLL for D � S-1 HΩL,

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Under this construction, 

for fixed t Î H0, 1L,

HΩHΛLLn+1
Qn HΛL � 2

-1
B HΛL IΛ

2
- 1M1�2

ä
j�1

¥

I1 - v jM

1�2

+ O H1L

as n ® ¥. This result holds uniformly for all  ΩHΛL¤ £ t, i.e., uniformly outside the 

ellipse EIt-2M, where IΛ2 - 1M1�2
 is assumed positive for Λ > 1.

2. If x � cosHJL for J Î H0, ΠL and if n ® ¥, then

2 ä QnHcosHJL sinHJLL � IDIã
-ä JM ã

ä Hn+1L J
- DIã

ä JM ã
-ä Hn+1L JM � ä

j�1

n

I1 - v jM

1�2

+ OH1L

on compact subsets of 0 < J < Π. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then the result holds uniformly on 0 £ J £ Π.

3. If x � cosHJL for J Î H0, ΠL and if n ® ¥, then

Q
n

2HcosHJLL - Qn-1HcosHJLL Qn+1HcosHJLL � DIã
-ä JM DIã

ä JM � ä
j�1

n

I1 - v jM + OH1L

holds uniformly on all compact subsets of 0 £ J £ Π. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then the result holds uniformly on 0 £ J £ Π.

4. If in f HzL bn Î R, an > 0 for all n � 0, 1, 2, …  and if DHJL � argIDIãä JMM is 

chosen as a continuous function of J on 0 < J < Π, then

QnHcosHJL sinHJLL � ¡DIã
ä JM¥ sinHHn + 1L J - D HJLL � ä

j�1

n

I1 - v jM

1�2

+ O H1L

uniformly on compact subsets of 0 < J < Π as n ® ¥.
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4
.

and define the function B HΛL � D HΩHΛLL for D � S-1 HΩL,

Sk HΩL � 1 + â
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¥
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as n ® ¥. This result holds uniformly for all  ΩHΛL¤ £ t, i.e., uniformly outside the 
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- DIã

ä JM ã
-ä Hn+1L JM � ä

j�1

n

I1 - v jM

1�2

+ OH1L

on compact subsets of 0 < J < Π. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then the result holds uniformly on 0 £ J £ Π.

3. If x � cosHJL for J Î H0, ΠL and if n ® ¥, then

Q
n

2HcosHJLL - Qn-1HcosHJLL Qn+1HcosHJLL � DIã
-ä JM DIã

ä JM � ä
j�1

n

I1 - v jM + OH1L

holds uniformly on all compact subsets of 0 £ J £ Π. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then the result holds uniformly on 0 £ J £ Π.

4. If in f HzL bn Î R, an > 0 for all n � 0, 1, 2, …  and if DHJL � argIDIãä JMM is 

chosen as a continuous function of J on 0 < J < Π, then

QnHcosHJL sinHJLL � ¡DIã
ä JM¥ sinHHn + 1L J - D HJLL � ä

j�1

n

I1 - v jM

1�2

+ O H1L

uniformly on compact subsets of 0 < J < Π as n ® ¥.
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Let f HzL be a J-fraction of the form

f HzL �
1

z + b0 -
a1

z+b1-
a2

z+b2-
a
3

¸

where an, bn Î C, an ¹ 0 for n � 0, 1, 2, … , where lim an � 1 �4 and lim bn � 0 

hold, and where An HzL � Bn HzL denotes the nth approximant of f . Suppose, too, 

that

â
j�1

¥ a j - 1

4
+ ¡b j¥ < ¥,

let Ω Î C be an arbitrary complex number with w � Ω2 where, for convenience, 

the notation u j � 2 b j for j ³ 0 and let v j � 1 - 4 a j for j ³ 1 is adopted, and 

define Qn HΛL � Bn HΛL � Ha0 a1 º anL1�2 where, for each n ³ 1,

Ha0 a1 º anL1�2 � 2
-n ä

j�1

n

I1 - v jM

1�2

is chosen in 8z Î C : arg HzL Î @-Π �2, Π �2D<. Given this, the following results hold:

1. Define for Λ Î C � @-1, 1D the transformation ΩHΛL to be

ΩHΛL �
1

2
IHΛ + 1L1�2

- HΛ - 1L1�2M2

with roots assumed positive for Λ > 1. Moreover, let

EHRL � z Î C : IReHzL � IR1�2
+ R

-1�2MM2
+ IImHzL � IR1�2

- R
-1�2MM2 �

1

4
.

and define the function B HΛL � D HΩHΛLL for D � S-1 HΩL,

Sk HΩL � 1 + â
r�1

¥

â
k< j1< j2<º< jr<n

ck, j1
HΩL c j1, j2 HΩL º c jr-1, jr HΩL,

ck, j HΩL � H1 - wL-1 IΩ u j I1 - w
j-kM + w v j I1 - w

j-k-1MM

with ck, j H±1L � ± H j - kL u j + H j - k - 1L v j by definition. Under this construction, 

for fixed t Î H0, 1L,

HΩHΛLLn+1
Qn HΛL � 2

-1
B HΛL IΛ

2
- 1M1�2

ä
j�1

¥

I1 - v jM

1�2

+ O H1L

as n ® ¥. This result holds uniformly for all  ΩHΛL¤ £ t, i.e., uniformly outside the 

ellipse EIt-2M, where IΛ2 - 1M1�2
 is assumed positive for Λ > 1.

2. If x � cosHJL for J Î H0, ΠL and if n ® ¥, then

2 ä QnHcosHJL sinHJLL � IDIã
-ä JM ã

ä Hn+1L J
- DIã

ä JM ã
-ä Hn+1L JM � ä

j�1

n

I1 - v jM

1�2

+ OH1L

on compact subsets of 0 < J < Π. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then the result holds uniformly on 0 £ J £ Π.

3. If x � cosHJL for J Î H0, ΠL and if n ® ¥, then

Q
n

2HcosHJLL - Qn-1HcosHJLL Qn+1HcosHJLL � DIã
-ä JM DIã

ä JM � ä
j�1

n

I1 - v jM + OH1L

holds uniformly on all compact subsets of 0 £ J £ Π. If additionally

â
j�1

¥

jI¡a j - 1�4¥ + ¡b j¥M < ¥,

then the result holds uniformly on 0 £ J £ Π.

4. If in f HzL bn Î R, an > 0 for all n � 0, 1, 2, …  and if DHJL � argIDIãä JMM is 

chosen as a continuous function of J on 0 < J < Π, then

QnHcosHJL sinHJLL � ¡DIã
ä JM¥ sinHHn + 1L J - D HJLL � ä

j�1

n

I1 - v jM

1�2

+ O H1L

uniformly on compact subsets of 0 < J < Π as n ® ¥.

TheoremForMeromorphicExtensionOfTFractions1
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Let THzL be a general limit periodic T-fraction of the form

T HzL �
1

1 + d0 z -
c1 z

1+d1 z-
c2 z

1+d2 z-
c
3

z

¸

where cn, dn-1 Î C are complex numbers with cn ¹ 0 for n ³ 1 and where 

limn®¥ cn � c Î C, limn®¥ dn � d Î C. Let S denote the divergence line of T. The 

following cases exhaust all possible values of S.

1. If d � 0, then it can be assumed without loss of generality that c � 1 �4 and 

hence S � @1, ¥ Ì R
+ where R+ denotes the set of all positive real numbers.

2. Let c Î C and d ¹ 0. In this case, it can be assumed without loss of generality 

that d � 1. In each such case, -1 Î S and

S � :It c
1�2

+ It2
c - 1M1�2M

2
: -1 £ t £ 1>

holds where all roots are assumed to be positive. The cases are, more precisely:

(a) If d � 1 and c < 0, then

S � A-IH c¤ + 1L1�2
+  c¤1�2M2

, -IH c¤ + 1L1�2
-  c¤1�2M2E Ì R

-

where R- denotes the set of negative real numbers.

(b) If d � 1 and 0 < c < 1, then S is equal to the subarc of the unit circle contain�

ing -1 having endpoints Ic1�2 ± ä H1 - cL1�2M2
 in R2 @ C.

(c) If d � 1 and c � 1, then S � 8z Î C :  z¤ � 1<.

(d) If d � 1 and c > 1, then S � I Ü 8z Î C :  z¤ � 1< where 

I � AIc1�2 - Hc - 1L1�2M2
, Ic1�2 + Hc - 1L1�2M2E Ì R

+ with 1 Î I.

(e) If d � 1 and c �  c¤ ãä J with 0 < J < Π, then S Ì S
J where SJ is the trigonomet�

ric spiral

S
J � 9z � r ã

ä Ψ
: r � r HΨL � sin HH+JL �2L �sin HHΨ - JL �2L, J < Ψ < 2 Π - J=

with rHΨL strictly decreasing from ¥ to 0. In particular, S is the subarc of SJ 

which passes through -1 and has endpoints r HΨ0L ãä Ψ0 and r H2 Π - Ψ0L ã-ä Ψ0 

where Ψ0 is characterized by the identity cos Ψ0 �  c¤ -  c - 1¤, J < Ψ0 < Π.

TheoremForMeromorphicExtensionOfTFractions2
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Let THzL be a general limit periodic T-fraction of the form

T HzL �
1

1 + d0 z -
c1 z

1+d1 z-
c2 z

1+d2 z-
c
3

z

¸

where cn, dn-1 Î C are complex numbers with cn ¹ 0 for n ³ 1 and where 

limn®¥ cn � c Î C, limn®¥ dn � d Î C. Suppose further that the partial quotients 

of T satisfy

â
j�1

¥

I¡c j - c¥ + ¡d j - d¥M R
j

< ¥

for some R > 1, let S denote the divergence line of T, and let SHRL denote the 

boundary curve of the region into which a meromorphic extension of T across S 

exists. The following cases exhaust all possible values of SHRL where, through�

out, a � IR + R
-1M �2 and b � IR - R

-1M �2.

1. If d � 0, then without loss of generality, c � 1 �4. In this case,

S HRL � 9z � r ã
ä Ψ

: r � r HΨL � 2 Ha - cos ΨL �b
2
, 0 £ Ψ £ 2 Π=

and r¢ HΨL > 0. In this case, for R large, SHRL is almost a circle of radius 4 � R 

around 0; also, the endpoints of S � @1, ¥ are firs torder algebraic branch 

points for the extended meromorphic version of T presuming T T ¥.

2. If d � 1, c �  c¤ ãä J, J Î R, then SHRL consists of two curves S±HRL defined as 

follows:

S± HRL � 9z � r± ã
ä Ψ

: r± � r± HΨL � P± HΨL �Q± HΨL, Ψ1 £ Ψ £ 2 Π - Ψ1=,

where Q HΨL � 2  c¤ Ha - cos HΨ - JLL > 0, p � a  c¤ +  c - 1¤ > 1, 

q � a  c¤ -  c - 1¤ > -1, and

P± HΨL � sin
2

Ψ + Ib  c¤ ± HHp - cos ΨL Hq - cos ΨLL1�2M2
,

Ψ1 £ Ψ £ 2 Π - Ψ1. Moreover:

(a) If q ³ 1, the Ψ1 � 0.

(b) If q < 1, Ψ1 denotes the unique solution of cos Ψ1 � q, 0 < Ψ1 < Π.

(c) Always, r+ HΨL > r- HΨL > 0 for Ψ1 < Ψ < 2 Π - Ψ1.

(d) If q < 1, 0 < Ψ1 < Π, r+ HΨ1L � r- HΨ1L > 0, r+ H2 Π - Ψ1L � r- H2 Π - Ψ1L > 0.

(e) If q � 1, Ψ1 � 0, r+ H0L � r+ H2 ΠL � r- H0L � r- H2 ΠL > 0.

(f) If q > 1, Ψ1 � 0, r+ H0L � r+ H2 ΠL > r- H0L � r- H2 ΠL > 0. For large R, S±HRL are 

almost circles of radius  c¤ R, H c¤ RL-1, respectively. If c � 1, then r+ HΨL � R, 

r- HΨL � 1 � R for 0 £ Ψ £ 2 Π.

TranscendentalCriterionForPartialQuotientsAndDenominat

ors
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Let Α � @b0; b1, b2, … D be a continued fraction and suppose An � Bn denotes its 

nth convergent. Then Α is transcendental if there exist functions Ε : Z
+ ® R

+, 

k : Z
+ ® Z

+ and constants ∆, c1 Î R for which (i) bn+k HnL ³ c1 B
n

ΕHnL for infinitely 

many n Î Z
+, and (ii) lim infn®¥ IΕ HnL � ∆ - H1 + ∆Lk HnL-1M > 0.

TruncationBoundsForLimitPeriodicContinuedFractions1

Let Ξ be a generalized continued fraction

Ξ � K
k=1

¥ ak

1

and set

A � A1

An � sup
m³n

 am¤

Αn � am +
1

4
-

1

2

Pn �
2 - A

-
2 A

n

2

A
- A + 2

Εn � Pn sup
m³n

 Αm¤

tn �
an

z + 1

and Tn be the composition of t1, … , tn.

If Ξ is a limit periodic continued fraction and

lim
n®¥

an � 0

and A < 2 �3 and sup
m³n

 Αm¤ < H1 - AL P1, then Ξ converges and 

 TnHΑn+1L - T¤ < 2 ΕnJÛm=1
n A

m

2

H1-ΕmL2
N.

TruncationBoundsForLimitPeriodicContinuedFractions2
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Let Ξ be a generalized continued fraction

Ξ � K
k=1

¥ ak

1

where

lim
n®¥

an � a.

Define Αn by

Αn HΑn + 1L � an

and  Αn¤ <  Αn + 1¤, then

Α HΑ + 1L � a.

Set

tn �
an

z + 1
,

let Tn be the composition of t1, … , tn, and let Ξ be a limit periodic continued 

fraction.  Then lim infH -Α + Μn - 1¤L > 0 implies Ξ converges and

lim
n®¥

HTnHΜnLL � T.

TruncationErrorOfPositiveContinuedFraction

Let

Ξ � K
k=1

¥ ak

bk

be a continued fraction and fk � pk �qk the sequence of its convergents.  Let ak, 

bk > 0 for all k. Then for any m ³ 1 the following holds:

0 < H-1Ln H fn+m - fnL £
H-1Ln+1

an+1H fn - fn-1L

bn bn+1 + an+1J1 - an

qn-2

qn

N
.

TwoElementContinuedFractionRepresentationOfReals
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Let Α1, Α2 be positive reals where Α1 < Α2, and set

Β1 �
Α1

2 Α2
2 + 4 Α1 Α2 - Α1 Α2

2 Α2

Β2 �
Α1

2 Α2
2 + 4 Α1 Α2 - Α1 Α2

2 Α1

.

Given x is an irrational number where 0 < x < 1, let

Ξ � K
n=1

¥ 1

bn

be the regular continued fraction of x.  Let LA2
 be real numbers x where 

bn Î A2 � 8Α1, Α2<.  Then given Α1 Α2 £ 1 �2,

LA2
� @ Β1, Β2D.

UltraCloseApproximation

Let Α Î H0, 1L be arbitrary. The rational number p �q is said to be an ultra-close 

approximation to Α if among all rationals x � y with denominators y £ q, p �q has 

the least ultra-distance to Α, i.e., p �q is an ultra-close approximation to Α if and 

only if

q

p

q

- Α � min y

x

y

- Α :
x

y

Î Q, y £ q .

UltraDistance

Let Α Î H0, 1L be arbitrary and let p �q be any rational number. The ultra-dis�

tance from p �q to Α is defined to be q  Hp �qL - Α¤.

UltraDistancesAmongFareyPairsAndTheirMediants

Let a �b and c �d be a Farey pair with mediant M � Ha + cL � Hb + dL. Then the ultra-

distance between a �b and M is the same as the ultra-distance between c �d and 

M.

UnboundedPeriodsForOddDegreeFamily
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Let dHXL be a polynomial, e be the exponent of dHXL, a be the leading coefficient 

set of dHXL where X is an integer, dHXL  be a quadratic irrational number, Ξ be 

its regular continued fraction, and lHXL be the regular continued fraction period 

of Ξ.  Given

e mod 2 � 1 ê Ø a � n
2

then it follows that lHXL is unbounded.

UnboundedPeriodsForSimpleQuadraticFamily

Let

dHXL � r + X
2

be a polynomial, X be an integer, r be an integer, dHXL  be a quadratic irra�

tional, Ξ be its regular continued fraction, and lHXL be the regular continued 

fraction period of Ξ. Given r ¹ 0, r ¹ -1, r ¹ 1, r ¹ 2, r ¹ -2, r ¹ 4, and r ¹ -4, it 

follows that lHXL is unbounded.

UniformlyDistributedModuloOne

Let E Ì @0, 1, Ω � 8xn<
n�1
N  a sequence of real numbers and define AHE; N; ΩL so 

that

A HE; N; ΩL � ð 8n : 1 £ n £ N and fracHxnL Î E<,

where ð A denotes the number of elements of A for all sets A and fracHyL 

denotes the fractional part of the element y for all y. Then Ω is said to be 

uniformly distributed modulo one if for every pair a, b with 0 £ a < b £ 1, each 

interval @a, b contains the “appropriate number of terms” in AH@a, b; N, ΩL as 

N ® ¥, i.e., if

lim
N®¥

A H@a, bL; N; Ω

N

� b - a.

UnimodularMap

A homographic map m : z # Ha z + bL � Hc z + dL is called unimodular if 

a, b, c, d Î Z @äD and det m � a d - b c Î 8±1, ± ä<.

UniquenessOfCDuallyRegularExpansionsForIrrationals
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Any irrational number Α Î R �Q has precisely one C-dually regular continued 

fraction expansion.

UniquenessOfCRegularExpansionsForIrrationals

Any irrational number Α Î R �Q has precisely one C-regular continued fraction 

expansion.

UniquenessOfIrrationalContinuedFractionExpansions

Let Α1 be an irrational number where 0 £ Α1 £ 1,

Ξ1 � K
n=1

¥ 1

b1HnL

be its regular continued fraction, Α2 be an irrational number where 0 £ Α2 £ 1, 

and

Ξ2 � K
n=1

¥ 1

b2HnL

be its regular continued fraction of Α2. Then given Α1 � Α2, it follows that 

b1HnL � b2HnL.

UniqueRegularChainRepresentationsOfCertainComplexNu

mbers

For any complex number Ξ Î C which is not properly equivalent to a real num�

ber, there exists exactly one regular chain c h Ξ representing Ξ.

VanVleckJensenTheorem
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Let Ξ be a regular continued fraction of the form

Ξ �
1

b1 +
1

b2+
1

b3+º

,

where each partial denominator bk is an arbitrary complex number and let 

wn � @0; b1, b2, … , bnD denote the nth convergent of Ξ. Suppose further that 

Re HbnL > 0 for all n and that, for Θ < Π �2 arbitrary,  argHbnL¤ < Θ. Then:

The sequences 8w2 n< and 8w2 n+1< of even and odd convergents of Ξ, respec�

tively, converge.

The sequence 8wn< converges if and only if Ún=1
¥  bn¤ � ¥.

For all m ³ n,  wm - wn-1¤ £ 1 �dn for dn ³ Κ cosHΘL lnI1 + Λ cosHΘL Ú
k�1
n  bk¤M. Here, 

Κ � ReHb1L � H2 + ReHb1LL and Λ � HReHb1L2 min 91, 1�  b1¤2=.

VanVleckTheorem

Let

Ξ � K
k=1

¥ 1

bk

be a continued fraction with b1 ¹ 0 and all the bk Î C with ReHbkL > 0 ê bk � 0. 

Then Ξ converges if and only if

â
k=1

¥

 bk¤ � ¥.

VanVleckTheoremOnConvergenceOfRegularCFractions

Let Ξ be a regular C-fraction,

Ξ � K
n=1

¥ an z

1
,

f  be a meromorphic function, G be 8-t � H4 aL : t ³ 1<,

D � C - G

be a domain, V be the poles for f  in D, and K be any complex compact set in D 

disjoint from V and G.  Then given

lim
n®¥

an � a,

there is a meromorphic function f  such that "K Ξ converges uniformly on K to f .

VeryWellApproximableNumbersConvergentDenominators

DivergeInLogarithmicMean

Results.nb    297



VeryWellApproximableNumbersConvergentDenominators

DivergeInLogarithmicMean

Let

Ξ � K
n=1

¥ 1

bn

be a regular continued fraction, Bn be the convergent denominator of Ξ, Ε be a 

positive real, and SHΕL be the natural numbers n where bn+1 > B
n

Ε . Then the 

existence of an Ε such that SHΕL is finite if and only if Ξ is well approximable, and 

if Ξ is very well approximable, then limn®¥ lnHBnL �n does not converge.

VincentTheorem

Given a polynomial equation with rational coefficients that does not have 

multiple roots, making successive transformations of the form

x � b1 +
1

x
¢
, x

¢ � b2 +
1

x
¢¢

, x
¢¢ � b3 +

1

x
¢¢¢

, …

where b1, b2, …  are any positive numbers bi ³ 1, the resulting transformed 

equation has either zero or one sign variations.

If there are zero sign variations, the polynomial equation has no root.

If there is one sign variation, the polynomial equation has a single positive real 

root represented by the continued fraction

b1 +
1

b2 +
1

b3+
1

¸

.

WaadelandTailTheorem
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A sequence 9gHnL=
n�0

¥
 of nonzero complex numbers satisfying gHkL ¹ -1 for 

k � 1, 2, 3, …  is the sequence of right tails for some convergent continued 

fraction

Ξ � K
m=1

¥ bm

1
,

bk Î C � 80<, k � 1, 2, 3, … , if and only if

1 + Κ1 + Κ1 Κ2 + Κ1 Κ2 Κ3 + º � ¥,

where

Κn �
-1 + g

HnL

g
HnL

for n � 1, 2, 3, … . When this result does hold, the elements bk of Ξ necessarily 

have the form

bk+1 � g
HkL I1 + g

Hk+1LM

for k � 0, 1, 2, … .

WallTransformation
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The phrase “Wall transformation” is an unofficial term referring to a certain 

transform of complex-valued functions studied by H.S. Wall, among others, and 

is notable for its end result, namely the expression of a complex-valued func�

tion f  as an equivalent continued fraction. Not to be confused with the closely-

related Schur algorithm for complex-functions, the Wall transform describes 

more so the underlying continued fraction theory of the elements used by 

Schur in his algorithm. A more precise version of this distinction is as follows.

Given a function f � f0 : W ® C where W Ì C is a region, Schur’s algorithm 

determines a sequence 8 fn<
n�1
¥  of complex-valued functions for which

fn HzL �
z fn+1 HzL + fn H0L

1 + fnH0L z fn+1 HzL
� fn H0L +

I1 -   fnH0L¤2M z

fnH0L z + 1 � fn+1 HzL
.

Substituting the resulting expressions in terms of lower-indexed terms, one 

obtains for f  the so-called Wall continued fraction Ξ f  of the form

Ξ f � a0 +
I1 -  a0¤2M z

a0 z +
1

a1+
I1- a1 ¤2M z

a1 z+º

where an � fn H0L for n � 1, 2, 3, … . By way of the maximum principle, the 

process stops if  an¤ � 1 for some n and continues ad infinitum otherwise.

The Wall transformation, then, is the collection 8Τn<
n�0
¥  of Möbius transforma�

tions where for each n, ΤnHwL is of the form

Τn HwL �
z w + an

1 + an w

and is related to the aforementioned algorithm of Schur by the identity

f HzL � Τ0 é Τ1 é º é Τn H fn+1L,

where n is either the index for which  an¤ � 1 or n � ¥ otherwise. Analogous to 

the typical recurrence notation for continued fraction convergents, the above 

identity for f  in terms of Τk leads to the expression

Τ0 é Τ1 é º é Τn HwL �
An + z B

n

*
w

Bn + z A
n

*
w

for all w Î C, where 8An<, 8Bn< are collections of polynomials (called Wall 

polynomials) and where p
n

* HzL � z
n

pnH1 �zL for any polynomial pn. Here, by 

definition, B0 � B0
* � 1, A0 � a0, and A0

* � a0. Using this construction, one can 

immediately prove analogous versions of the determinant continued fraction 

identity, along with a wide array of identities concerning analytic functions of 

the unit ball, Blaschke products, and orthogonal polynomials.

WilliamsConjecture
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The period length pHdL of a regular continued fraction expansion of d  for 

positive integer d should, under the extended Riemann hypothesis, be bounded 

above by c d lnHlnHdLL for a suitable c:

p HdL

d ln Hln HdLL for d � 1 Hmod 8L

d ln Hln H4 dLL for d ¹ 1 Hmod 8L

< c
�

+ oH1L,

where c
� � 3.7012.

Possibly, c
� � 12 expHýL lnH2L � Π2 » 1.501.

WorpitzkyTheorem

Let Ξ � K
n=1

¥

an �1 be a generalized continued fraction with partial numerators an 

satisfying 0 <  an¤ £ 1 �4 for all n ³ 1.  Then

1) Ξ converges absolutely for some value of Ξ with 0 <  Ξ¤ £ 1 �2

2) 0 <  SnHwL¤ £ 1 �2 for all n Î Z
+ and  w¤ £ 1 �2, where SnHwL is the nth approxi�

mant function.

ZajtaPandikovContinuedFractionToPowerSeriesConversion

The continued fraction

Ξ � 0 + K
k=1

¥

1 for k � 1

-zk t for k ¹ 1

1

has the following equivalent power series representation

Ξ � 1 + â
k=1

¥

FnHz1, z2, … , znL t
n

where the coefficients FnHz1, z2, … , znL are

FnHz1, z2, … , znL � â
pHnL

â
k=2

n
ck-1 + ck - 1

ck

zk

ck

where the outer sum extends over all unordered partitions pHnL of the integer n 

into n nonnegative parts ck: Ú
k=1
n

ck � n.

ZarembaConjecture
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Let ÂA be the set of all finite continued fractions with all partial denominators 

bounded by an integer A > 0:

ÂA �
b

d

� K
k=1

N 1

bk

: "
1£k£N

1 £ bk £ A í N Î Z
* í N < ¥ .

Let DA be the set of all denominators occurring in ÂA:

DA � d : $b gcdHb, dL � 1 í
b

d

Î ÂA .

Then for sufficiently large A, DA � Z
+ holds.

ZarembaConjectureForLargeA

Let ÂA be the set of all finite continued fractions with all partial denominators 

bounded by an integer A > 0:

ÂA �
b

d

� K
k=1

N 1

bk

: "
1£k£N

1 £ bk £ A í N Î Z
* í N < ¥ .

Let DA be the set of all denominators occurring in ÂA:

DA � d : $b gcdHb, dL � 1 í
b

d

Î ÂA .

Then for sufficiently large A, and N Î Z
*,

cardHDA Ý @1, NDL � NH1 + oH1LL.

ZarembaConjectureForSmallPowers

Let ÂA be the set of all finite continued fractions with all partial denominators 

bounded by an integer A > 0:

ÂA �
b

d

� K
k=1

N 1

bk

: "
1£k£N

1 £ bk £ A í N Î Z
* í N < ¥ .

Let DA be the set of all denominators occurring in ÂA:

DA � d : $b gcdHb, dL � 1 í
b

d

Î ÂA .

Then all powers of 2 and all powers of 3 are in D3.
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