Theorem examples

Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg

Structure of Gal(lk(zz)/lk) for some fields k = Q(\/ 2 pq p2, i) with Cly(k) = (2, 2, 2)

Author(s): Abdelmalek Azizi - Abdelkader Zekhnini - Mohammed Taous
Source: Abh. Math. Semin. Univ. Hambg. (2014) 84:203-231

Theorem 3 Let 2" = h(p1p2), om+l — h(—p1p2), wheren > 1 andm > 2.
. . . _|4ifqg=1,
(1) #xkx; =4, forall j #3.1If j =3, then #xg; = [2 ifqg =2
(2) All the extensions K satisfy Taussky’s condition (A) i.e. #xk; N Nj > 1, for details see
[17].

(3) The order of kL, is 8 (total 2-capitulation), for all j, and LLj are of type (A).
(4) The abelian type invariants of the 2-class groups Cl(K;) are given by:

(2, 4) otherwise.
Gi) 1 (2) = 1, then Cla(Ka), Cly(Ks), Cla(Ke) and Clo(K7) are of type (2,2,2) if
(”-L) = —1, and of type (2, 4) otherwise.

3

(i) CL(K) ~ Ch(Ky) =~ [ @22 (5) =1

(iii)) Assume (%) =—1
m\ _ Ch(K4) ~ Ch(K7) =~ (2,4),
¥ (3) =1 then [ Ch(Ks) ~ Ch(Ke) ~ (2,2, 2).
Ch(Kyq) =~ Clh(Ky) ~ (2,2,2),
ClL(Ks) ~ Ch(Ke) = (2, 4).

(5) The abelian type invariants of the 2-class groups Cly(L;) are given by:

If(%) =1, then [

. @m2Mifg =1,
@) Ch(Ly) = ChkY) ~ (me(m,n{ S L) ifq=2.



2 | TheoremExamplesFromLiterature.nb

(ii) If(;j—;) = —lor (%) - (g—;) = 1, then Cly(Ly), Cla(Ls), Cla(La) and Cly(Ls)
are of type (2, 4).
I (g) — (%) — 1, then Ch(Ly), Cla(Ls), Cla(La) and Cly(Ls) are of type
2,2,2).

(iii) (a) Assume q = 2, so Cly(Lg) and Clo(L7) are of type (2,2"+?) if (ﬁ—;) =1,
otherwise we have:

@i (2L)=1,
Ch(Le) =~ e Chh(L7) ~ [
Q2,8 if (Z) =1,

3

@.8)if () =1,
@,4) if () = —1.
(b) Assume q = 1.

') (L Ch(Le) =~ (2", 2",
1+ 1+i) _ 2\L6
If ( ml) (n_;) =1, then [Clz(]ln) ~ (Qmin(m—1,n) pmax(m,n+1))

147 (Lt Cla(Lg) =~ (2mintn—1m), pmaxm+D),
If (n_ll) (n—z‘) = —1, then [Clz(]L7) ~ (2m—1, 2n+1).

The theme of a vanishing period
Author(s): Daniel Barlet
Abh. Math. Semin. Univ. Hambg. (2014) 84:155-185

Proposition 3.1.6 Let E be a [A]-primitive theme of rank k > 1.

~

1. Then there exists ¢ € nik_l) \ Eik_z) such that E is isomorphic to A.p C Eik_l), with
the convention Ei_l) = {0}.

2. Conversely, for any such ¢, A.¢ is a [A]-primitive theme of rank k.

3. In this situation, for any j € [1,k] F; := Agn Egj Vs a rank J normal sub-module
of A.¢ contained in bk_j.Egj_l).

Advances in Mathematics

The Isbell monad
Richard Garner
Advances in Mathematics 274 (2015) 516-537

Proposition 8. Every cylinder factorisation system (€, M) on C is the underlying cylinder
factorisation system of a unique extended cylinder factorisation system (£, M); more-
over, any morphism of cylinder factorisation systems F:C — D preserves these extended
classes, in the sense that F(€) C € and F(M) C M.
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Theorem 12. The forgetful 2-functor Z-Alg — CAT has a (strictly commuting) factori-
sation

I-Alg ! CFS

~

CAT

wherein J is a biequivalence 2-functor satisfying JK = 1; it follows that K 1is a biequiv-
alence, and so that CFS is pseudomonadic over CAT.

On Zippin’s Embedding Theorem of Banach spaces into Banach spaces with bases

Th. Schlumprecht
Advances in Mathematics 274 (2015) 833—-880

Theorem 1.1. (See [27, Corollary|.) Every separable and reflexive Banach space
into a reflexive Banach space with a basts.

Theorem 1.2. (See [27, Theorem|.) Every Banach space with a separable dua
into a space with shrinking basis.

Main Theorem. Assume that X is a Banach space with separable dual. Then X embeds
into a space W with a shrinking basis (w;) so that

a) Sz(W) = Sz(X),
b) if X is reflexive then W is reflezive and Sz(X*) = Sz(W*), and
¢) if X has the w*-Unconditional Tree Property, then (w;) is unconditional.

Formality theorem for gerbesT
Paul Bressler, Alexander Gorokhovsky, Ryszard Nest,Boris Tsygan
Advances in Mathematics 273 (2015) 215-241

Theorem 1.1. Let X be a C*°-manifold. Then the DGLA gpa(Jx)w S Loo quasi-isomor-
phic to the Loo-algebra s(Ox) g .

Theorem 1.2. For any Artin algebra R with mazimal ideal mp there is an equivalence of

2-groupoids
Def(S)(R) = Bic I (X (s(Ox)n @ mg))

natural in R.
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Theorem 1.3. Suppose that X is a C*° manifold equipped with a pair of complementary
complez integrable distributions P and Q, and S is a twisted form of Ox;p (6.2). Let
H € I'(X; F_102%) be a representative of [S] (6.2). Then, for any Artin algebra R with
maximal ideal mp there is an equivalence of bi-groupoids

Bic II;(Z(s(Ox/p)u ® mg)) = Def(S)(R),

natural in R.

Annals of Functional Analysis

ON GENERALIZED BECKNER'’S INEQUALITY
KICHI-SUKE SAITO AND RYOTARO TANAKA
Ann. Funct. Anal. 6 (2015), no. 1, 267-278

Theorem. Let 1 < p < g < oo, and let v,, = /(p—1)/(g—1). Then the
inequality

(|u+"/p.qv]" + |u— ﬂfp,qv|q>1/q < (|u-L vlP + |u — v[,,)l/p
2 - 2

holds for all u,v € R.

Banach Journal of Mathematical Analysis

ON E-FRAMES IN SEPARABLE HILBERT SPACES
GHOLAMREZA TALEBI, MOHAMMAD ALI DEHGHAN
Banach J. Math. Anal. 9 (2015), no. 3, 43-74

Theorem 2.3. For a E—orthonormal system {gi},., the following are equiva-
lent:

(i) {gx}°, is an E—orthonormal basis.
(i) £ =3 (£ (Blo)), ) (Bloss),, Ve m.

(i) (£,9) = 2% (£ (Blorss) ) ((Blad) o9)  Vhg et
) [{(# (Blanz) )| = 118 vren

(v) {g}22, is an E—complete sequence.

(vi) If <f, (E {gj}j'il)k> =0, Vk €N, then f =0.

Bulletin AMS

Singular perturbations of complex polynomials
Robert L. Devaney.
Bull. Amer. Math. Soc. 50 (2013), 391-429
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Theorem (The escape trichotomy). Suppose the orbits of the free critical points
tend to oo.

(1) If vy lies in By, the J(F)) is a Cantor set.

(2) If vy lies in Ty, then J(F)) is a Cantor set of concentric simple closed
curves, each one of which surrounds the origin.

(8) In all other cases, J(F») is a connected set, and if F¥(va) € Tx where
k > 1, then J(F)) is a Sierpitiski curve.

Theorem (Escape time conjugacy). Let
L

zn’

Fy(z) = 2"+ zin and F,(z)=2"+

where A and p are parameters that lie in Sierpiriski holes.
(1) If X and p lie in the same Sierpiriski hole, then Fy and F,, are topologically
conjugate on their Julia sets.
(2) If A and p lie in Sierpiriski holes with different escape times, then F and
F,, are not topologically conjugate on their Julia sets.
(3) Suppose A and p are centers of different Sierpiriski holes that have the same
escape time. Let a be a primitive (n — 1)-st root of unity. Then F) and
F,, are topologically conjugate on their Julia sets if and only if, for some
integer j, either
o p=0aXor
o u=0a%)\
Therefore, if A and p are parameters that lie in different Sierpiriski holes
whose escape times are the same, then F and F,, are topologically conjugate
on their Julia sets if and only if the parameters corresponding to the centers
of these Sierpiriski holes are symmetrically located with respect to rotation
by o or by complez conjugation followed by such a rotation.

Theorem (Rings around the McMullen domain). FS°trage 427> 3" the |
domain is surrounded by infinitely many “Mandelpinski necklaces” S*
1,2,.... These are simple closed curves that have the properties that:

(1) Each curve 8* surrounds M as well as S**1, and the S* accun
the boundary of the McMullen domain as k — oo.

(2) The curve S* meets the centers of T Sierpiriski holes, each wi
time k + 2, where

T =(n—2)n*"14+1.

(3) The curve S* also passes through i centers of baby Mandelbrot
base period k (when k # 2), and these Mandelbrot sets and Sierpir
alternate as the parameter winds around S*.
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Proposition 2.1. For each k € N, let P, := {¥"h_jaix' 1 a; € R} = R**'. Then for
alln € N, given A € Py there is a unique B € Py such that S,(B) = A.

Chern—-Weil forms and abstract homotopy theory
Daniel S. Freed and Michael J. Hopkins.
Bull. Amer. Math. Soc. 50 (2013), 431-468

Definition 3.7. Let F’, F be presheaves on manifolds. Then a map ¢: F' — F
is a natural transformation of functors. Thus for each test manifold M there is a

map F'(M) LSING S (M) of sets such that for every smooth map M’ Ly M of test
manifolds, the diagram

F'(f)

F'(M') =— F'(M)
(3:8) v(:\fr')l l‘P(M)

For) <Y F o)
commutes.

Lemma 3.9 (Yoneda). For any presheaf F, evaluation on X determines an iso-
morphism Pre(Fx,F) = F(X).

Theorem 3.17. The de Rham complezx of Q! is isomorphic to

(3.18) RSHR-YHDR-ZR-1s ..
In particular, the de Rham cohomology of Q' is

R, e=0;
3.19 Hip(Q') =< " ’
.19 (@) {O, o

Definition 3.22. Let F: Man®”’ — Set be a presheaf. Then F is a sheaf if for
every manifold M and every open cover {U,} of M

(3.23) FM) — [[FU,) = ] FUayNUa,)

g G0

is an equalizer diagram.
Definition 7.1. Let F, be a simplicial presheaf. The de Rham complex of 7
hosPre(F, , 00 4t 4, -)

(7.2)
=~ hosPre(F,, %) -4 hosPre(F,, Q') % -
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Theorem 7.28.

(i) For any smooth manifold X the de Rham compler of X x (' ® g) is
Q(X;Kosg*)* with differential the sum of the de Rham differential dx
on X and the Koszul differential dg in (7.17).

(ii) The de Rham complez of the simplicial Borel quotient (X¢g)v in (7.23) is
the basic subcomplez of (X ; Kosg*)® with differential dx + dg.

Counting problems in Apollonian packings
Elena Fuchs.
Bull. Amer. Math. Soc. 50 (2013), 229-266

Theorem Z (Bourgain and Kontorovich, 2011 [BK11]). Almost every natural
ber is the denominator of a reduced fraction whose partial quotients are bount
50.

Conjecture 2.14 (Hensley, 1996 [Hen96, Conjecture 3, p. 16]).
(2.15) P4 D Ny = 04> 1/2.

Theorem 2.7 (Zaremba, 1966 [Zar66, Corollary 5.2]). Fiz (b,d) = 1 with i

[a1,a2,...,ax] and let A :=maxa;. Then for Zp 4 given in (2.6),
. 4A 4A+ 1) logd

2.8 Disc(2; 4) < .

(28) isc(Zp.a) < (1og(A+ D) " Togd ) d

Complex analysis and operator theory

Complex Anal. Oper. Theory (2013) 7:519-528
The Generalized Schwarz—Pick Estimates of Arbitrary Order on the Unit Polydisk
Jianfei Wang : Yang Liu

Theorem A Suppose ¢(z) is holomorphic mapping from D, to Bn. Then for any

multi-indexm = (m1,...,mpn) suchthatmj >0, j=1,...,n,
1 lp(2)]? 2
1602, 9@+ A=l @ p(@)] < (mt = 55 1+ lell) 7).

Lemma 2.1 ([13]) If f € H(S2, S2), then

F2(f(2), Jr2)E) < F(z,6), z€Q, £ eCV.
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Theorem 3.1 If ¢ : D, — 2 is a holomorphic mapping, then

o 11 |8l
F2(9(2), J,(2)¢) < max (1 sy R |an2) (1)

holds for each z € D, and ¢ = (¢, ..., ¢,) € C.

Complex Anal. Oper. Theory (2013) 7:623—-634
Properties of ODEs and PDEs in Algebras Yakov Krasnov

Definition 1.1 The A-valued function u(x) is called A-analytic (A-monogenic) if
u(x) is the solution of the Dirac equation in algebra A = (R", o):

0 d
DOM(X)=0, D=Vx=(a—x1,,§) (13)

Proposition 2.1 ([11]) Let

d™z dz dm—lz ;
F_P(Z,E,.“’W), zeR (21)
be a polynomial ODEs inR"; i.e. P(z,21,...,2m—1) is a polynomial in the z;’s. Then

the solution to this equation may be obtained from the solution of a quadratic system
(1.1) occurred in a suitable algebra A = (R", o).

Theorem 2.4 The formal solution of the initial value problem (IVP) for the Ricatti
equation in the binary algebra A is given by

x(t) =xp+x2t 4+ x4 (2.4)

where a'® is a k-th symmetric power defined recurrently

1 m
a:=a, a¥=q4% qomt=— Za[kl o glm—k+1l (2.5)
mi=
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Theorem 2.6 Assume that e, e1, ..., e, forms an orthogonal basis in unital asso-
ciative algebra A = (R"*1, o) and let e be the two sided unit element in A. Denote
by z; = xpe; — x;ey, i = 1, ..., n. By construction, D o z; = 0. Then any polynomial
solution to the Dirac equation in A may be represented by the superposition of the
following homogenic monomials:

1
dmomemt) = 2 gy 02y 000y 2.6)

Cw(my,...mp)

where the sum runs over all distinguishable permutations of m1, .. ., mg.

Theorem 2.7 (Lyapunov function) [2] Let the Riccati equation (1.1) occur in an
algebra A. Suppose, there exists the symmetric, positive definite, bilinear form b :
R" x R" — R" satisfies b(x, x*) = 0 for all x € A; then the origin is stable.

Theorem 2.8 (Boundness) [3] Suppose, A is a rank three algebra. Then there exists
bounded solution to (1.1) iff A has a complete complex structure. (The existence of
complete complex structure equivalent to the non-trivial solubility of two equations:
x2o0x? = —x%and y o y* = —y in the algebra A.)

Complex Anal. Oper. Theory (2013) 7:33—42

Chaos of the Differentiation Operator on Weighted Banach Spaces of Entire Functions

José Bonet - Antonio Bonilla

Corollary 2.4 Let ¢(r) be a positive function with lirrolc @(r) = oo. For each
r—
1 < p < oo there is an entire function f such that

r

Mp(f,r) < 9(r) 1
i

that is frequently hypercyclic for the differentiation operator D on H(C).

Theorem 2.3 Let v be a weight function such that lim,_, o v(r) % = 0 for some
rp
1 < p < oc. If the differentiation operator D : Bp o — Bp o is continuous, then D

is frequently hypercyclic.

Lemma 2.2 The following conditions are equivalent for a weight vand 1 < p < oo:
(i) {eP2:18|=1} C Bpp.
(i) Thereis® € C,|0| = 1, such that ¢** € B, .

(iii) 1im, o0 v(r)& =
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< 00. Then the

Proposition 2.1 Let v be a weight function such that sup v(r)
r=0 v(r + l)

differentiation operators D : Bp oo = Bp,co and D : Bp o — Bp o are continuous.

Complex variables and elliptic equations

Entire functions that share a set with their derivatives
Jun-Fan Chen
Volume 58, Issue 6, 2013, pages 727-734

Lemma 6 Let F be a family of meromorphic functions in a domain D, let the set
S={a,,a,}, where a, and a, are distinct finite complex numbers, and let M be a
positive number. If, for any f€ F, fand f’ share the set S, and 0 < | f"(z)| < M whenever
f(2) €S, then F is normal in D.

Lemma 1 (cf. [7,8]) Let k be a positive integer and let F be a family of func
meromorphic on the unit disc, all of whose zeros have multiplicity at least k,
suppose that there exists A > 1 such that | f ®(z)| < A whenever f(z) =0, fe F. Th
F is not normal, there exist, for each 0 <a <k,

(a) a number 0 <r<1,

(b) points z,, |z,| <,
(c) functions f, € F, and

(d) positive numbers p,— 0
such that
Ja(2zn + pn)
[

locally uniformly with respect to the spherical metric, where g is a noncon:
meromorphic function on C such that g°({) < g"(0)=kA + 1. Moreover, g has ord

most two.

= gn(§) = g(%)

- ~

TueEOREM A Let f be a nonconstant entire function, and let a be nonzero finite
complex number. If f and ' share a CM, and if f"'(z) = a whenever f(z) = a, then f=f".

Integration of vector hydrodynamical partial differential equations over octonions

S.V. Ludkovsky
Volume 58, Issue 6, 2013, pages 579-609

ProposiTiON 3.1 A4 family D, of all differential operators with constant A, coefficients
is a power associative real algebra with a centre Z(D,) consisting of all differential
operators with real coefficients and with a unit element I.
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ProrosiTiON 3.4 Let
lim szo; 2a”F(z VK(x,z) = (3.20)

for each x, y in a domain U satisfying conditions D1 and D2 (see Section 2.1) with
oo e U and every non-negative integers 0 <k, s,n e Z such that k+ s+ n < m. Suppose
also that , j°° b 0, [F(z, y)K(x z)|dz converges uniformly by parameters x, y on each
compact subset WC U C AT for each x|+ |B|+ |w| <m, where a = (g, ...,0r_)),

lo| =ap+ -+ oy, = = gl /dxg’ - - - 8x57". Then the non-commutative Ime integral
p f F(z, y)K(x z)dz from Section 2 satisfies the identities:

a_’,:'afoo F(z, y)K(x, z)dz =2 oﬁ"a_/oo F(z, y)K(x, 2)dz + An(F, K)(x, »), (3.21)

/«7 F(z, y)K(x,2)dz = (— 1)"’2 o / ” F(z, y)K(x, z)dz 4+ Bu(F, K)(x, ),

(3.22)
where

Am(Fa K)(xa y) = _20_1\'"_1 [F(x’ y)K(x: z)]lz:x + 0xAm-1 (Fs K)(xa }’) (323)

for m=>2,

B, (F, K)(x,») = (=1)"%07""'F(x, p)K(x, 2)|,_, + ['0:Br-1(F(z, ), K(x, 2)) ]| _,

(3.24)
for m=>2,

A1(F, K)(x,y) = Bi(F, K)(x, y) = —F(x, »)K(x, x) (3.25)

o is an operator o acting by the variable x€ U C A,.

TueoREM 4.5  Partial differential Equation (4.76) with Vo= Yo =0 over the Cayley—
Dickson algebra A,, 2 <r <3, has a solution given by Formulas (4.38)—(4.40), (4.65),
(4.66), when the appearing integrals uniformly converge by parameters as in

Proposition 3.4 and the operator (I— A,) is invertible and Fe Mat(R) and
Ke Mat(A,) with seN for r=2 and s=1 for r=3.

Application of the argument principle to Maxwell's Conjecture for three point charges
Ronen Peretz

Volume 58, Issue 6, 2013, pages 715-725

Tueorem (The topological argument principle) Let g(Z) be a complex valued
Jfunction defined in a domain Q CC (Z=X+1iY). Suppose that g(Z) is continuous non-
zero in Q2 except on a set ECQ consisting of isolated points {a;} having no
accumulation point in Q. If y is a zero cycle in Q and yC D=Q — E, then d(g, y) = Z;
n(y, aym(g, a).
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§(Z-2)
/(@)= Z(Z Zr

ProrosiTiON 2.1 Let f(Z) be as above, then the zeros of f(Z) lie in the convex hull of

the set {Z,,...,2Z,}.
Proof Let f(§)=0, then § =) . | o;Z; where

o § ) & .
aj_(ls_zjlp /(;lg_zklp)a ISJSH

ProposiTION 3.1 Let the function f(Z) be defined as follows:

Z—
1(2) = ZslkZ( Z|p, neZ", & eR*, ZyeC, 1<k<n,peR

Then we have

(1 ifp>1

0 ifp<l, gl(gk(zj = Z/\Zj— Zil" #0
f

m(f,Z)) =10 ifp=1, |LE(Z —Z))/\Zi— Zl > 1§ |-

ki

1 ifp=1, — ZK)/\Z; — Zk|| < |§
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ProprosITION 3.3  Let the function f(Z) be defined as follows:

zZ-Z
2= Z&é Z|l1§), neZ', &eR", ZyeC, 1<k <n peR.

Then we have
(1)

2
- " 52— 2)[
JU)‘( )(Z|Z 2|P) () —~|Z - ZIP‘2 ’
(2) If0 < p < 1, fis a local-diffeomorphism, orientation preserving (J(f) > 0) and
so for each zero w; of f, m(f, w;) > 0. In particular, if m is the total number of

zeros of f(Z) in C and if
E(Z; — Zi) Zk) .
E Z - Zkl” l<j=n,

k#j

then m<d(f(2), y).
(3) If 1 < p, J(f) might be negative, zero or positive.
4) If p=2then J(f) <0, and so f(Z) is orientation reversing. So at each zero w; of
J> m(f, w) <0.

Conformal geometry and dynamics

Volume 17, Pages 1-5 (January 9, 2013)
CONFORMAL AUTOMORPHISMS OF COUNTABLY CONNECTED REGIONS
IAN SHORT

Theorem 1.1. The conformal autornorphism group of a countably connectec
cular region of connectivity at least three is either a Fuchsian group or a dis
elementary group of Mdbius transformations. Furthermore, each Fuchsian
and discrete elementary group arises as the conformal autormorphism group
countably connected circular region.

Corollary 1.2. Each countably connected region of connectivity at least thr
conformally equivalent to a region whose conformal automorphism group is e
a Fuchsian group or a discrete elementary group of Mobius transformations.

Theorem 3.1. The conformal automorphism group of a countably connected
tured sphere of connectivity at least three is a discrete elementary group of A
transformations.
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Lemma 4.1. Let G be a non-elementary subgroup of M. There exists
wnvariant disc if and only if G contains no strictly lozodromic elements.

Volume 17, Pages 39-46 (February 28, 2013)
COMPACT KLEIN SURFACES OF GENUS 5 WITH A UNIQUE EXTREMAL DISC
GOU NAKAMURA

(5% TV TAAA VAR fma A LA WA N ASAA [ ASAAASL WA VASL W OUAALA AL A AA aLmLE

Theorem 2.2. The groups of automorphisms of the non-orientable surfaces of
genus 5 with a unique extremal disc are classified as follows:

(1) Ds : 803,2765,3431,3509.

(2) Zs : 3436,3486.

We obtained the tollowing result via the use ot a computer.

Theorem 2.1. There exist 71 trivalent graphs with 8 vertices and 12 edges (Figures
3 and 4). There exist 3627 side-pairing patterns for the regular 24-gon to be a
non-orientable extremal surface of genus 5. The surfaces obtained from these side-
pairings are not isomorphic to each other.

Volume 17-118 (June 6, 2013)
BOUNDARY VALUES OF THE THURSTON PULLBACK MAP
RUSSELL LODGE

Theorem. Let g be a reduced fraction. Then under iteration of oy, s lands either
on the two-cycle % “» % or on the fized point —%. More precisely, g lands on —*

1
if and only if p and q are odd.

Theorem. For any g € PMCG'(@, Py) there is a positive number N so that ¥ (g)
€ M for alln > N, where

M= {e,B,a 0?87 a1 Ba"t, a7, 82} U {a(Ba)k : k € Z}.

Theorem 2.2. Let F be a Thurston map not equivalent to a Lattés map. Then F is
Thurston equivalent to a rational function if and only if there are no obstructions.
If this rational function exists, it is unique up to Mobius conjugation.

Definition 2.3. The Teichmiiller space for a Thurston map F is defined to be
Te ={6: (% Pr) — C}/ ~,

where ¢; ~ ¢, if and only if there is a Mobius transformation M so that ¢, is
isotopic to M o ¢; rel Pr.
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~ o~

(8%, Pr) —2 (€, 3(Pr))
F Fs
(52, Pr) — (C, 6(Pr))

Definition 2.4. The Thurston pullback map oF : Ir — Jr isdefined by op(7) =
[4].

Theorem 2.5. The action of m1(S? \ Pr,2p) on X* is the action associated with
®:m(S?\ Pp,29) = m(S?\ Pr,2) 1 Sq given by
B(y) = ((€a71lr,» Lavaliys oo Lavalic,)) P,

where y; = F~1(v)[zi], zi is the endpoint of £;, k; is the element of X corresponding
to zi, and p is the permutation defined by i — k; for alli € X.

— -

Proposition 2.6. Let ® : G = G 1S3 be a wreath recursion, and let ¢ be an
associated virtual endomorphism. If ® is contracting, then p, < 1. If the action

of G is transitive on every level X" and py < 1, then the wreath recursion ® is
contracting.

Volume 17, Pages 68-76 (May 6, 2013)
CLASSIFICATION OF QUATERNIONIC HYPERBOLIC ISOMETRIES
KRISHNENDU GONGOPADHYAY AND SHIV PARSAD

Theorem 2.1 (see [16, Theorem 1]). Given a polynomial f(x) with real coefficients,
f(z) = apz™ + ap_1z2" ' +--- +a,,
if the number of the sign changes of the revised sign list of
{A1(f), A2(f),-- -, An(f)}
is p, then the pairs of distinct conjugate imaginary roots of f(z) equal p. Further-

more, if the number of non-vanishing members of the revised sign list is q, then the
number of distinct real roots of f(x) equals ¢ — 2p.

Theorem 2.2 (see [9, Number of Roots Theorem|). Let
D, = (1) et 20 "A,,.

Suppose the roots of f(z) are distinct. Then the number of real roots of f(zx) is:
(1) if n is odd, congruent to 1 or 3 modulo 4 according to whether D, > 0 or
D, <0;
(2) if n is even, congruent to 0 or 2 modulo 4 according to whether D,, and the
leading coefficient of f(z) have the same or opposite signs.
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Theorem 3.1. Let A be an element in Sp(n,1). Suppose A¢ is the corresponding
element in GL(2(n+1),C). Let S4 = {Ay,--- , A1} be the discriminant sequence
of ga(t), where A, = A is the usual algebraic discriminant of ga(t). Let D be
the discriminant of the minimal polynomial of Ac. Then the following holds.

(1) A is regular hyperbolic if and only if A < 0.

(2) A is regular elliptic if and only if A > 0.

(3) A is semi-regular hyperbolic if and only if A = 0 and the number of sign
changes of the revised sign list of S4 is exactly one.

(4) A is screw hyperbolic if and only if A = 0 and ga(t) has a real root A such
that |A| > 2.

(5) A is strictly hyperbolic if and only if ga(t) has a real root X such that |A| > 2
and for allm <n -2, gﬁ{")(2) =0.

(6) A is elliptic or parabolic if and only if A = 0 and there is no sign change
in the number of revised sign list of Sa. Further, A is parabolic if D = 0;
otherwise it is elliptic. Further, A is simple elliptic if the number of non-
vanishing members of the revised sign list is ezactly one.

Duke Mathematical Journal

Volume 165, Pages 2809 - 2895 (1 December 2015)
The geometry of Newton strata in the reduction modulo p of Shimura varieties of PEL type
Paul Hamacher

THEOREM 1.2

Let Mg (b, i) be the underlying reduced subscheme of the Rapoport—Zink space asso-
ciated to an unramified Rapoport—Zink datum (cf. Definition 4.8).

(1)  The dimension of Mg (b, 1) equals

1
(o, 1 = v6 (b)) — 7 def (B). (1.2)
(2)  If b is superbasic, then the connected components of Mg (b, L) are projective.
Volume 164, Pages 235 - 275 (1 February 2015)

Detecting squarefree numbersAndrew
R. Booker, Ghaith A. Hiary, and Jon P. Keating
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PROPOSITION 3.2
Let Y1,Y,,... be independent random variables such that P(Y; = 1) = P(Y; =

—1)= 3, and put Y := 2} p,<ex Y’;f_jpj a- IOgij ), where pj denotes the jth

prime number. Then, for each n satisfying 3 <n < eX, we have
3002 u?
P(Y >v,)>2"%2 exp(——"), P(Y >u,) < exp(— n ),
cn 326}1
logp logp; log? p

where v := 3, _, 35;;!{ (1— =5FL), up := 4vy, and cp = Y on<p;<eX °gpf” a-
logp; )2

)%

Journal of Mathematical Physics

Holder continuity of the solution map for the Novikov equation
A. Alexandrou Himonas and John Holmes
J. Math. Phys. 54, 061501 (2013)

Theorem 1. If s > 3/2 and 0 < r < s, then the data-to-solution map for the NE Cauchy problem
(1.1) and (1.2), on both the line and the circle, is Holder continuous on the space H* equipped with
the H" norm. More precisely, for initial data u(0), w(0) in a ball B0, p) ={¢ € H* : |l¢||lu: < p}
of H, the corresponding NE solutions u(t), w(t) satisfy the inequality

lu@) — w®lcqo,riam < cllu©) — wO)|%-, (1.9)

where the exponent « is given by

1 if(s,r)eAl
a={2s-1)/(s—r) if (s,r)€ Ay, (1.10)
s—r if (s,r)€ Ay

and the regions Ay, A,, and Aj in the sr-plane are defined by
A ={(s,r):5>3/2,0<r<s—-1,r+s=>2},

Ay ={(s,r):2>5>3/2,0<r <2-s5s},
Ay ={(s,r):s >3/2,s—1<r <s}.
The lifespan T and the constant ¢ depend on s, r, and p.
Identities from infinite-dimensional symmetries of Herglotz variational functional

Bogdana Georgieva and Theodore Bodurov
J. Math. Phys. 54, 062901 (2013)
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Theorem 1. If s > 3/2 and 0 < r < s, then the data-to-solution map for the NE Cauchy problem
(1.1) and (1.2), on both the line and the circle, is Holder continuous on the space H* equipped with
the H" norm. More precisely, for initial data u(0), w(0) in a ball B(0, p) ={¢ € H* : |l¢||lu: < p}
of H, the corresponding NE solutions u(t), w(t) satisfy the inequality

lu@) — w®lcqorium < cllu©) — wO)|%-, (1.9)

where the exponent a is given by

1 if(s,r)eAl
a=32s—-1)/(s—r) if (s,r)e Ay, (1.10)
s—r if (s,r)€ Ay

and the regions Ay, A,, and Aj in the sr-plane are defined by
A ={(s,r):s>3/2,0<r<s—-1,r+4+s>2},

Ay ={(s,r):2>5>3/2,0<r <2—5s},

Ay ={(s,r):s>3/2,s—1<r <s}
The lifespan T and the constant c depend on s, r, and p.

Theorem 3.3. Let the infinite-dimensional group of transformations (6), which depends on the
arbitrary function p(t) € C"*2 and its derivatives p = d'pldt’, subject to the conditions T = t,
#* = x* and @ = u when p(t) = pV(t) = ... =p"(t) = 0, be a symmetry group of the functional z
defined by the differential equation (1). Then the identity

fQ(U"(E 0:) — T(E Qiu}) - X*(E Qiuly))d"x =0 ©)

Theorem 3.4. Let the infinite-dimensional group of transformations (7) which depends on the
arbitrary function p(t, x) and its derivatives up to some order r, subject to the conditions f = t,
x* = x*, and it = u when p and all its derivatives up to order r are zero, be a symmetry group of
the functional z defined by the integro-differential equation (1). Then the identity

U'(EQ;)-X*(EQiu,)=0, i=1l...,m k=1,...,n (22)

holds. Here U' and X* are the adjoints of the linear differential operators

L 17 B [ dg* 4
XL=—¢ i— L2 —++Z ¢ : : T k=1,...,n
op  Op, Ot  Opy dxi - apWY) dtidxi ... dx
coy ay'a  ay' 9 Y’ 9"
VA S\ AR AL A R > 4 =1...,m

ap  8p. 8t py; dx/ ap\) driodxi .. dxi’

7
evaluated with p(t, x) and all its partial derivatives up to order r set to zero. Here the multi-index J
= (o, J1>---»Jr) isartuple of jo =0,1;1 < j, <nand
) _ 9" p(t, x)
dthodxh .. dxir”
Q; denotes the generalized Euler-Lagrange expressions (11) and E is defined by (12).

Scattering theory for graphs isomorphic to a regular tree at infinity
Yves Colin de Verdiére and Frangoise Truc
J. Math. Phys. 54, 063502 (2013)
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Definition 2.1. Let g > 2 be a fixed integer. We say that the infinite connected graph I" is
asymptotic to a regular tree of degree g + 1 if there exists a finite sub-graph I'y of I such that
I :=I'\D'g is a disjoint union of a finite number of trees T;,l = 1, - - -, L, rooted at a vertex x; linked
to Iy and so that all vertices of T, different from x; are of degree q + 1. The trees T;,1 =1, .-+, L,
are called the ends of . (See Fig. 1.)

Equivalently, " is infinite, has a finite number of cycles and a maximal sub-tree of I" has all
vertices of degree q + 1 except a finite number of them.

Definition 2.2. We define the edge boundary (3."g) of "¢ as the set of edges of I connecting a
vertex of I'g to a vertex of I'', namely, one of the x;’s. We denote by |x|r, the combinatorial distance
ofx € Vr to Iy

In particular, for [ =1, .-+, L, |x;|r. = 1.

Proposition 3.1. The map A s — A is holomorphic from S to C .. It maps bijectivel
sheet St = {s € §|Ts > 0} onto C \ I,. By this map the circle S° is a double coveriny

q 3—1s _ q—é—xs
Theorem 3.1. The spectrum of Ay is the interval I, = [—2./q, +2./q].
The Green’s function of the tree Ty is given, for s € ST by

q(— 3+is)d(x,y)

Go(As, x, y) = C(s)q(_i_“)d(x‘y) = —34is’
q: 7 — g~

As a function of s, the Green’s function extends meromorphically to S with two poles -
+ t/2.

Moreover, we have, for any x € V, and any y belonging to the ray from x,, to w,

GO(A'Ss X, }’) — Grad(ks, y)q(%_ls)b‘“(x)
with

Grad(hs, y) = C(s)g =20

- -

Theorem 3.2. (See, for example, Ref. 3): The spectral measure de, of T, is independent of the
vertex x and is given by

des(0) i= deGy = 9 HDVA =2,

27 (g + 12 —A2) M

Journal of Theoretical Probability

Representations of the Absolute Value Function and Applications in Gaussian Estimates
Ang Wei

J Theor Probab (2014) 27:1059-1070
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Proposition 2.1 Assume that X = (X1, X2, ..., Xn)! is a non-degenerate
Gaussian random vector with covariance matrix . When t € (0, 2), for ai

symmetric matrix A, n-dimensional column vector b, and constant ¢ we h

E (X, AX) + (b, X) +¢|* = c,/t-f-l (1 — F(®) —m) dt
0
where
r exp (itc — Le2(b, (Z~! —2itA
¢ _TELAR2AT) L O (1 ¢ — 31%(b, ( itA)
Jrr (1 —1/2)

2[det(I — 2itT A)]1/2

Theorem 2.2 Suppose E = (Xjx) is a symmetric Gaussian matrix, where X i
= Xi,j ~ N(, o k) and they are independent for any 1 < j < k < n. Then

fort € (0,2),
E |det(E)|*
nl'(t 4r/(n2—n) (1 2/n)t
> ¢ + 271 ,(5)
(2r+1r2( + 2) H J J 1<jl:£5n H

where c; = 27/2x =12 (1/2 + t/2) is the value of the t-th absolute moment of a
standard Gaussian random variable.

Journal of Number Theory

Prime polynomial values of linear functions in short intervals
Efrat Bank, Lior Bary-Soroker

Journal of Number Theory 151 (2015) 263-275

1, his prime
1(h) =<3 ’
(h) {0, otherwise.
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Theorem 1.1. Let B > 0 and 1 > € > 0 be fized real numbers. Then the asymptotic
formula

— #I(ane) ~1/2
2 A1) = G 1+ 00l )

holds uniformly for all odd prime powers q, 1 < n < B, distinct primitive linear functions
Li(X),...,Ln(X) defined over F4t] each of height at most B, and monic fy € Fyt] of
degree in the interval B > degfy > %

Theorem 3.2. (See [1, Theorem 3.1].) Let A = (Ao,...,Am) be an (m + 1)-tuple of
variables over Fy, let F(t) € F4[A][t] be monic and separable in t, let L be a splitting
field of F over K = Fy(A), and let G = Gal(F,K) = Gal(L/K). Assume that F, is
algebraically closed in L. Then there exists a constant ¢ = c(m, tot.deg(F)) such that for
every conjugacy class C C G we have

#{GEFm+1 —C} |C| m+1 <Cqm+1/2
@ e [ '

Decomposition of products of Riemann zeta values

Chan-Liang Chung, Minking Eie,, Wen-Chin Liaw, Yao Lin Ong
Journal of Number Theory 150 (2015) 1-20

Main Theorem. Suppose that S,, is the symmetric group of n objects,

Tz +22) (1 + 22+ - 2p) = Z mpx® Z mpzozh - gbet,
|b|=n |b|=n

and

T = {b= (bo,b1,...,ba—1) | mp > 0 in the above product}.
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Then for an n-tuple d = (dy,ds,...,d,) of nonnegative integers with |d| = k, we have
¢(dy +2)¢(d2 +2) - - ¢(dn + 2)

=Y > Y @ bymybl w{ (ZZ) (fzi:ii) (ZZ)}

o€Sy |la|=k bET,

with
n
gj =a; + Z (a; —d;), j=12,...,n,
i=j+1
and
I(a,b)
= Z C({l}bo_l,al.o+1,041,1,-~-,011,b1 + 02,0y vy Qne1,bny + @n +1).
lasleartd,
}ajl_sjasj;t_ﬁ—i—l

Journal of Fourier Analysis and Applications

Poisson Wavelets on n-Dimensional Spheres
llona Iglewska-Nowak
J Fourier Anal Appl (2015) 21:206-227

Proposition 4.1 Poisson wavelets g;)", m € N, can be uniquely harmonically contin-
ued to functions over R"t1 \ {ré}. They are given by

m+1 m+1 A
o™ o _, Cj(cosx)
mix) = — Mo+ — e ? ~ ’ 9
gp @) s, ?_0, ( ! X ) x — ré2x ©)

wherer = e P,

x—re .
coOsYy =—-€
|x —re|

and the coefficients " are recursively given by

oz8=1,
o =0  form=>1,
afn=0 forl > m,

m+l __ ;. m m
al = lal + al—l'

A Note on Spaces of Absolutely Convergent Fourier Transforms
Bjorn G. Walther
J Fourier Anal Appl (2014) 20:1328-1337
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Theorem 3.1 Let YV be a closed subspace of Co (R") such that Y is a subset of
[.7" Ll] R™). If Y is reflexive then it is of finite dimension.

Growth and Integrability of Fourier Transforms on Euclidean Space

William O. Bray
J Fourier Anal Appl (2014) 20:1234-1256

Theorem 1.1 Let 1 < p < 2. Then there is a constant ¢, > 0 such that for all
f € LP(R),

e whenp =1,
sup [min1, G)2) FI | < exsi (10

e whenl < p <2,

1/ !
[ / min{l,(m)zf”}ﬂx)v"dx] ’ < ¢, 2, £10).
R

Theorem 1.1 Let 1 < p < 2. Then there is a constant ¢, > 0 such that for all
f € LP(R),

e when p =1,
sup [min{1, (%) FW)1] < erl /103

e whenl < p <2,

1/p
[ / min{l,(xt)Z"’nm)l"'dx] ’ < cpQpL£10).
R

Letters in mathematical physics

Lett Math Phys (2013) 103:843—-849

On the Maximal Excess Charge

of the Chandrasekhar—-Coulomb Hamiltonian in Two Dimension
MICHAEL HANDREK and HEINZ SIEDENTOP

THEOREM 1. Assume d>2,AecL? (R?:R9),p:=—iV, and Ty :=|p+2|, then

loc

|x|Tox + Tiy|x| =0 ®)

on C°(RY).
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THEOREM 2. Assume L*®(R2:R2) and |A(X)| < ed/|x|,p(X) < eZ/|x|,e2Z €
[0, 47r2/ r(1 /4)4]. Assume that Cp o N has a ground state with ground state energy
En below the saturation threshold, i.e., Ex < Eyx_1. Then

N<206+2Z2)+1.
Lett Math Phys (2013) 103:865-879

Quantizing the Discrete Painleve VI Equation: The Lax Formalism
KOJI HASEGAWA

PROPOSITION 1. We have

1
(q4z‘lA+,q4)x.|:l lE+] k"2 0 | _g
LI(AT)= 27’0 cd 10
2 (A7) @2z 1A+, ¢ LE] 1 o «tl|? (10)
1
e (q"‘zA“.q“)x[ 1 E“:| k"2 0| g
L7(A™)=-1°2 21 70 ! cd 11
ke - o | I (b

where we used the standard notation for the infinite product: (x, Q)oc '=[1eo(1 —

xQM).

PROPOSITION 2.

LI(AT)R(AT,AT)L;(A7)=L;(AT)R(AT, AT)LF(AY). (16)

THEOREM 1. We have
+0-)_ +0- +1—y_ +1-
wo(1707)—gA(170 ).w0(2 17)—gAQR™1 )w0(2+0‘)‘1,

T(wo(1717)) =

wo(1+0-)—g wo(2+1-)—q
@1)
1 ey wo(1F17)—g7A(TTY)
T wo@ 1) == S
2+27)—g~1AQ12-
 wo( w0(2)+2‘{ )_q(_l ) wo(1+27)1. 22)

Mathematics in Computer Science

Antimagicness of Generalized Corona and Snowflake Graphs
Jacqueline W. Daykin - Costas S. lliopoulos - Mirka Miller - Oudone Phanalasy

Math.Comput.Sci. (2015) 9:105-111
Theorem 3.1 Let G be a connected or disconnected graph with p vertices. Then the sequential gener
graph seqG © 'H is antimagic.
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Theorem 3.3 Let G be a connected or disconnected graph with p vertices and let Hj, 1 < j < m, form > 2,
be the connected or disconnected k j-regular graphs with nj vertices such that form = 2, §(G) + nz > kz +ny,
and form > 3,8(G) +nm > kj +nj_1 > kn +np—1,2 < h < j < m. Then the generalized snowflake graph
Sf(H,, Hy, ..., Hy, G) is antimagic.

Probability Theory and Related Fields

Sequential complexities and uniform martingale laws of large numbers
Alexander Rakhlin - Karthik Sridharan - Ambuj Tewari
Probab. Theory Relat. Fields (2015) 161:111-153

Theorem 1 Let F be a class of [—1, 1]-valued functions. Then the following state-
ments are equivalent.

1. F satisfies Sequential Uniform Convergence.
2. For any a > 0, the sequential fat-shattering dimension fat, (F) is finite.
3. Sequential Rademacher complexity R, (F) satisfies lim,_, o R, (F) = 0.

Theorem 2 The following relation holds between the empirical process with depen-
dent random variables and the sequential Rademacher complexity:

E sup M, (f) < 2R,(F). (5)
feF

Furthermore, this bound is tight, as we have

1

. (m,, ) - i) < sup E sup M, (f) ©)

Zﬁ P feF
where B = inf cz sups, e 7 (f (2) — f'(2)) > 0.
Proceedings of the American Mathematical Society

A GENERAL FORM OF GREEN’S FORMULA AND THE CAUCHY INTEGRAL THEOREM
JULIACUFI AND JOAN VERDERA
Volume 143, Number 5, May 2015, Pages 2091-2102

1 dw
Ind(y,2) = 2—me —
Set
D = {z € C: Ind(y, 2) # 0}
and

Do = {z € C: Ind(y, 2) = 0}.
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Theorem. Let vy be a closed rectifiable curve and let f be a continuous function on

D U~ such that the 8 derivative of f in D, in the sense of distributions, belongs to
L%(D). Then

(1) / f(z)dz = 2 /D Bf(z) Ind(y, 2) dA(2).

Theorem (pointwise version). Let v be a closed rectifiable curve. Let f be a
continuous function on D U~y whose partial derivatives 0f /0x and Of /0y exist at
each point of D\ E, where E is a countable union of closed sets of finite length (one

dimensional Hausdorff measure), and such that 0f € L?(D), where Of is defined
pointwise almost everywhere on D. Then

/ f(2)dz =2i /D 0f(z) Ind(v, 2) dA(2).

THE GRAPHIC NATURE OF GAUSSIAN PERIODS
WILLIAM DUKE, STEPHAN RAMON GARCIA, AND BOB LUTZ
Volume 143, Number 5, May 2015, Pages 1849-1863

Theorem 2.1. Suppose that 0.y, is a cyclic supercharacter on Z/mnZ, where
(m,n) = 1, and let p : Z/mnZ — Z/mZ x Z/nZ be the natural isomorphism. If
p(w) = (Wm,wn), p(r) = (Tm,Tn), and a,b € Z with mb + na = 1, then for all
y € Z/mnZ we have

Olwhr (y) = 0w, rm (ay)a<wn)rn (by)

Theorem 6.3. Let ox be a cyclic supercharacter of Z/qZ, where q = j
nonzero power of an odd prime. If X = Al and |X| = d divides p — 1, il
image of ox is contained in the image of the function g : T¥4) — C definec

by .
(6) g(zl’z27°°'7z(p(d)) = Z l_[ zj::i

where the integers by ; are given by

e(d)—1
(7 th = Z bet'  (mod ®4(t)).

7=0

For a fized d, as q becomes large, the image of ox fills out the image of g, in the
sense that, given € > 0, there exists some g =1 (mod d) such thatifox : Z/qZ — C
is a cyclic supercharacter with | X| = d, then every open ball of radius € > 0 in the
image of g has nonempty intersection with the image of ox.

Proceedings London Mathematical Society

Non-Archimedean Whitney stratifications
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Immanuel Halupczok
Proc. London Math. Soc. (3) 109 (2014) 1304-1362

THEOREM 1.1. For every set X C K™ in the class C, there exists a ‘t-stratifica
reflecting X, that is, a partition (S;)ogign of K™ with S; € C such that for each
have the following:

(1) dlde =d or Sd = 0;
(ii) for any ball BC S;U---US,, the family (Sy,...,S,,X) is d-translatable o

LEMMA 2.8. Let U, be the kernel of the map res: GL,(Ox) - GL, (k). Then we have the
following (commutative) diagrams, where G & X means that G acts on X, and each straight
line G & X —» Y is exact in the sense that Y is the quotient of X by the action of G.

(&)

D — G n OI\ —» GL (k)

\’x

[\ n I\ / l/rnq_) Gnd(OI\) I_e:Gn d(A)

~
S Rv(™

/\R\

I'u{oco}

Quarterly Journal of Mathematics

ERROR TERM IMPROVEMENTS FOR VAN DER CORPUT TRANSFORMS
JOSEPH VANDEHEY
Quart. J. Math. 65 (2014), 1461-1502; doi:10.1093/gmath/hat040

THEOREM 1.1 [14, Lemma 5.5.3] Suppose that f(x) is real and four times continuously differen-
tiable on [a, b]. Suppose that there are positive parameters M and T, with M > b — a, such that,
for x € [a, b], we have

') < T/M?, OG0 «T/M® and f®x) <« T/M.

Let g(x) be a real function, and let V be the bounded variation of g on [a, b] plus g(a). Then

Y gme(foy= Y g )e(f (x,) —rx, +1/8)

asnzb fr@=r=f(b) VI Gr)
+0 (V (% + log(f'(b) — f'(a) +2))) ,

where x, is the unique solution in [a, b] to f’(x,) = r. The implicit constant in the big-O term depends
on the implicit constants in the relations between T, M and the derivatives of f (x).
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THEOREM 1.3  Suppose that f(x) and g(x) are real-valued functions with f € C>[a, b]
Cz[a, b). Suppose that there are positive constants M, T, U and c, withM > b —a,c > 1, ¢
T < cM3, such that, for x € [a, b],
f'x) =i TM2, |fOW)| <cTM™ forr =2,3,4,5,
187 ()| <cUM™ forr=0,1,2.

Then,
: & g@)e(f(x) —rx, +1/8)
Zﬁ gme(f(n) = r:Lf%m TS +R(b) - R(@) + OU),
where

~ 1\ [ sinh@us(f/ D) [ f'®) ,
R(u)—g(u)e(f(u)+ 4) fo L e( . z)dz,

s(-) is the sawtooth function, and the implicit constant depends only on c.

A RECURSION FORMULA FOR MOMENTS OF DERIVATIVES OF RANDOM MATRIX POLYNOMI-
ALS

S. AL 1 ALTUG
Quart. J. Math. 65 (2014), 1111-1125; doi:10.1093/gmath/hat054

1 wu/w?
8m (u) = A~_: f e— dw
|lw|=1

2mi wmtl
1 m m+1 u
=R >+, ),
F(m+1)02<2+ 2 4)

Mi(GQ2N), m) = / (Af{"’(l))k dA,

G(2N)

Tre(u) == gf£(82i—j+£ (),
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THEOREM 1.1 We have
M, (USp(2N), 2) = by (USp(2N), 2) - @N)**+50/2  o(N®+30/2)

where

dk
b (USp(2N), 2) = 2—“”5“/2@@“7;,0(2@)|u=o.

The Ramanujan Journal

Ramanujan J (2013) 31:53—-66 DOI

Generalized hypergeometric functions: product identities and weighted norm inequalities
Arcadii Z. Grinshpan

Theorem 2 Givenca, >0, let f(z) =ag+ajz+--- and g(z) =bo+ b1z +--- be
power series such that convolutions fy,(z) and g.p(z) are analytic in a disk D, =
{z:|z| <r}. Then forany . >0, realx,p>1(1/p+1/qg =1), t € (0, min(p, q)],
and nonzero complex ¢ € D,, the following inequality holds:

|| (fg)*(a+ﬁ)(§t)"[r;a+f3’k,rx}
<| f*a((’)"lp;a,ﬂﬂ,px] 3 [1t] lg:B.a+h,qx]" 9)

The equality in (29), provided that f and g are not identically 0, holds if and only
if

f@=fO[1+x+i0)z/¢]" and g)=gO)[1+ (x+i9)z/§]—5

(6 is a real number).
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Theorem 1 [14] Let ¢ (x) and ¥ (x) be complex-valued continuous functions on
[0,1). Then for any numbers a,B,A >0, p>1 (1/p+1/g =1), and T €
(0, min(p, q)], the following inequality holds:

1
|:f xa+ﬂ—l(l _x)}.—l
0

1 . 1/p
< K[f xa—l(l _x)ﬂ+/.—l|¢(x)lpdx]
0

1 T 1/t
f 1711 = )P o (xt) Y (x (1 — 1)) dt dx]
0

1 l/q
x[f xﬂ-l(l—x)“+k—1|¢(x)|"dx] : 27
0
where

_ e [ T@ 197 r@ 17 [ re+p 17!
K=[rmw] '[1‘(a+x)] '[—F(ﬂ+x)] [m] .

The equality in (27), provided that ¢ and  are not identically 0, holds if and only if
¢ (x) = p(0)e'?* and ¥ (x) = ¥ (0)e'®* for x € [0, 1] (8 is real).

Lemma 2 [12, 13] Let f.,(z) and g.s(z) be analytic in a disk
D, ={z:|z| <r}, where f and g are some power series and ., B > 0. Then the
(& + B)-convolution (fg)«(+p)(2) is analytic in D, and the integral formula

1

B(a, B)(f&)x@+p)(2) = fo (1= 1P a2 gup(z(1 = 1)) dt  (5)

holds for any z € D,.

Lemma 1 (i) Let f(z) = jFr(wz). Then fi4(2) = j Fri1(wz), where the additional
parameter equals .

(ii) Let F(z) = jFy(z®). Then Fyy(2) = jFyio(wz?/4), where the additional
parameters are equal to a/2 and (o + 1) /2.

(iii) Let F(z) = zj Fx(wz?). Then Fuy(2) = zjFiio(wz?/4)/a, where the addi-
tional parameters are equal to (o + 1)/2 and (a + 2) /2.

Ramanujan J (2013) 30:399-402
Pollaczek polynomials and hypergeometric representation
Jamel Benameur - Mongi Blel
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Proposition 1 (Pfaff’s transformation formula) Let b, ¢,z € C such that z # 1, ¢ is
not a negative integer. Then

—n,b —z -n,c—b
(1-2)"2F T | =2k iz ).
c ‘ ¢

Theorem 1 Let @ () = ‘%‘?b and
—n,A+i®(6)
F ;e—2i9
“A+i®@) —n+1

o O — i® (),
F@) = e =120 'n!( 2

Then, F is a polynomial of degree n of cos(f) and F(6) = P:(COS(G), a,b).

Transactions of the American Mathematical Society

Multiplicity on a Richardson variety in a cominuscule $G/P$
Michaél Balan.

Trans. Amer. Math. Soc. 365 (2013), 3971-3986

Theorem 0.1. Assume P is cominuscule. Let m € X! be arbitrary, ar
by py (resp. u¥, pr,) the multiplicity of m on X, (resp. XV, X ). Then

(1) Py = P [

Lemma 1.1. Let B € R, and 7 € WF. Then Uy fizes e, if and only if —3 ¢
7(RT \ R}).

Lemma 1.2. The Schubert cell C,. is the affine subspace of O, defined by
vanishing of the coordinates x_z with B € R™.

Proposition 1.10. Assume Y is a cone over m. Let p,, (resp. p*, ub ) be the
multiplicity of m on X, (resp. XV, X? ). Then

(4) Py = B B
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Proposition 2.1.
(a) deg Z! = deg Z,, deg Z".
(b) Z% is not a cone over m.

(C) deg(Pm)|z;;, = deg(pm)IZ""
(d) deg(pmZ;,) = deg Z,, deg(pmZ").

The automorphism group of a simple $\mathcal{Z}$-stable $C*{*}$-algebra
Ping Wong Ng and Efren Ruiz.
Trans. Amer. Math. Soc. 365 (2013), 4081-4120

Lemma 2.2. Let A be a separable, simple, unital C*-algebra and let € be a UHF
algebra. Then A ® € is Z-stable and hence either purely infinite or stably finite.
Moreover, if A ® € is (stably) finite, then it has the following properties:

(1) Stable rank one.

2) Cancellation of projections.

Strict comparison of positive elements when 2 is, additionally, exact.

Weak unperforation.

K -injectivity.

The (SP) property.

For every nonzero projection p € AR C, for everyn > 2, p(ARE)p contains

a unital sub-C*-algebra which is isomorphic to M,, ® M, 1.

(8) If p,q are nonzero projections in AR €, then there exist nonzero projections
p'.q inp(ARC)p and q(AR €)g, respectively, such that p’' ~ ¢'.

e e e N e

(

(3
(4
(5
(6
(7

Lemma 2.7. Consider the supernatural numbers p = 2°° and q = 3°°. Let A be
a simple unital C*-algebra. Let G be a closed normal subgroup of URA® 2, 4)o
that contains CU(ly ® 2, q)0 and let u;,v; : [0,1] 2 URA® 1z, Jo (1 <i<n) be
norm-continuous paths. Define w by

w = H(Uqﬁ,vi) = (Ul,vl)(u'z,v'z) T (un,'Un)-

Note that w € CU(C[0,1] @ A ® Im,em,)o € CUR® 2, g)o. If w(0) = 1, then
w € G.

Theorem 2.20. Let 2 be an exact, separable, simple, unital Z-stable C*-alg
Suppose that either

(1) A is nuclear and quasidiagonal or
(2) A has unique tracial state.

Then we have the following:

(a) CU(™A)o/T is a simple topological group.
(b) Every automorphism in Inng(2A) can be realized using unitaries in CU
(c¢) Inng(RA) is a simple topological group.

String connections and Chern-Simons theory
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Konrad Waldorf.
Trans. Amer. Math. Soc. 365 (2013), 4393-4432

Definition 2.1 ([27, Definition 6.4.2]). Let P be a principal Spin(n)-bundle over
M. A string class on P is a class £ € H3(P, Z), such that for every point p € P the
associated inclusion

tp:Spin(n) — P:g+— pg
pulls € back to the standard generator of H*(Spin(n), Z).

- o= N -

Theorem 2.2 ([36, Section 5]). Let m : P —» M be a principal Spin(n)-bundle
over M.
(a) P admits string classes if and only if %pl(P) =0.
(b) If P admits string classes, the possible choices form a torsor over the group
H3(M,Z), where the action of n € H*(M,Z) takes a string class £ to the
string class £ + m*n.

Theorem 2.4. The bundle P admits string classes if and only if the Chern-Simons
2-gerbe CSp has a trivialization. In that case, the assignment T —— & establishes
a bijection,

{ isomorphism classes of

trivializations of CSp } = { string classes on P }.

Theorem 2.9. Let P be a principal Spin(n)-bundle over M with connection A,
and let Zp 4 be the extended Chern-Simons theory associated to (P, A). Then, the
map & is injective. Moreover, under the assumption that the cobordism hypothesis
holds for Zp, 4, it is also surjective.

Theorem 2.12. Let w : P —» M be a principal Spin(n)-bundle over M with a
connection A. Let (T,V¥) be a geometric string structure on (P,A). Then, there
exists a unique 3-form Hy € Q*(M) such that

(2.1) 7*Hy = Ky + TP(A),
where Ky is the 3-form that represents the string class éx € H*(P,Z), and TP(A)

is the Chern-Simons 3-form associated to the connection A. Moreover, Hy has the
following properties:

(a) Its derivative dHy is one-half of the Pontryagin 4-form of A.
(b) It depends only on the isomorphism class of (T, V).
(c) For k € H3(M,Z) we have

Hv,n = Hv + Q(I‘i)
under the action of Corollary 2.11.
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Definition 3.1 ([34, Definition 5.3]). A bundle 2-gerbe over M is a covering 7 :
Y — M together with a bundle gerbe P over Y2, an isomorphism

of bundle gerbes over Y3, and a transformation

* N * T3 M®id . "
7l’127'> ® 7T23P ® 7T34P 7'l'1317 ® 7T34P
id®@mig,M / M / TigaM
W{Q‘P ® 71';47) . M 4 71'{41)
1247

over Y1 that satisfies the pentagon axiom shown in Figure 1.

Definition 3.5 ([34, Definition 11.1]). Let G = (Y, P, M, ) be a bundle 2-gerbe
over M. A trivialization of G is a bundle gerbe S over Y, together with an isomor-
phism

A:P@myS — m S

W;,;A o (WI34M [v2e) ld.) o (7!';23M ® id X id)

id o (1 ® id) .
134

mig Ao (i, M ®id) o (id ® 75, M ® id) g Ao (Tl M ®@id) o (id ® id ® 73,.A)

M40 0 id Tig30 ©id

wip Ao (id ® 754A4) o (id @ w33, M ® id) mipA o (id ® m35.4) o (id ® id ® 73,A)

id o (id ® w3340)

String connections and Chern-Simons theory
Konrad Waldorf.
Trans. Amer. Math. Soc. 365 (2013), 4393-4432

Definition 2.1 ([27, Definition 6.4.2]). Let P be a principal Spin(n)-bundle over
M. A string class on P is a class £ € H3(P, Z), such that for every point p € P the
associated inclusion

tp:Spin(n) — P:gt+— pg
pulls € back to the standard generator of H?(Spin(n), Z).
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- o= N -

Theorem 2.2 ([36, Section 5]). Let m : P —» M be a principal Spin(n)-bundle
over M.
(a) P admits string classes if and only if %pl(P) =0.
(b) If P admits string classes, the possible choices form a torsor over the group
H3(M,Z), where the action of n € H*(M,Z) takes a string class £ to the
string class £ 4+ 7*n.

Theorem 2.4. The bundle P admits string classes if and only if the Chern-Simons
2-gerbe CSp has a trivialization. In that case, the assignment T —— & establishes
a bijection,

isomorphism classes of | . .
{ trivializations of CSp } = { string classes on P }.

Theorem 2.9. Let P be a principal Spin(n)-bundle over M with connection A,
and let Zp 4 be the extended Chern-Simons theory associated to (P, A). Then, the
map & is injective. Moreover, under the assumption that the cobordism hypothesis
holds for Zp, 4, it is also surjective.

Theorem 2.12. Let w : P —» M be a principal Spin(n)-bundle over M with a
connection A. Let (T,V¥) be a geometric string structure on (P,A). Then, there
exists a unique 3-form Hy € Q*(M) such that

(2.1) m*Hy = Ky + TP(A),
where Ky is the 3-form that represents the string class éx € H*(P,Z), and TP(A)

is the Chern-Simons 3-form associated to the connection A. Moreover, Hy has the
following properties:

(a) Its derivative dHy is one-half of the Pontryagin 4-form of A.

(b) It depends only on the isomorphism class of (T, V).

(c) For k € H3(M,Z) we have

Hv,,g = Hv - Q(K,)
under the action of Corollary 2.11.

Definition 3.1 ([34, Definition 5.3]). A bundle 2-gerbe over M is a covering 7 :
Y — M together with a bundle gerbe P over Y2, an isomorphism

of bundle gerbes over Y3, and a transformation

T M®id

TiaP & m33P ® i, P migP @ m3, P
id@m33,M / m / TigaM
7rf2'P ® 7l';4P 4 71';47)

T2 M

over Y1 that satisfies the pentagon axiom shown in Figure 1.
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Definition 3.5 ([34, Definition 11.1]). Let G = (Y, P, M, ) be a bundle 2-gerbe
over M. A trivialization of G is a bundle gerbe S over Y, together with an isomor-
phism

A:PRn;S — w8

Tf;,!.A o (WI34M 7o) ld) o (7";23M & id X ld)
ido (4 ®id) i
T1349
wiA 0 (T, M ®id) o (id ® 73,, M ® id) 7igA 0 (T]oaM ®id) o (id ® id ® 73, A)

M40 0id Tig30 ©id

wipAo (id ®@ w34A) o (id ® 733, M ® id) miaA 0 (id ® m33.A4) o (id ® id ® m3,.A)

id o (id ® 73440)

Short geodesic loops on complete Riemannian manifolds with a finite volume
Regina Rotman.
Trans. Amer. Math. Soc. 365 (2013), 2881-2894

e st iR e i = Tt

Theorem 0.3. Let M™ be a complete noncompact Riemannian manifold of a finite
volume V. Then given a point p € M™ there exists T > 0, such that for allt > T
there exists a geodesic loop of length at most € at the distance t from p.

Theorem 0.5 ([G]). Let M™ be an n-dimensional manifold. Then Fill RadM
k(n)vol(M™) =, where k(n) is an ezplicit function of the dimension of a manif

Lemma 1.1. Let M™ be a complete noncompact Riemannian manifold of a
volume V,p € M™. Let o(t) be a geodesic ray, starting at a point p. Then give
0, there exists a set A = A(€) C (0,00) of measure at most 157, such that for
t* in A° (the complement of A in (0,00)), and for every 0 < § < min{1, %}
exists an (n — 1)-dimensional submanifold Z2 of M™ with the following prope

(1) vol,—1(Z¢) < &;

(2) Z¢ does not bound in M™\ {p};

(3) the distance between Z2 and the geodesic sphere S,-(p) = {xe M™|dist(z.
t*} is at most 6.
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Lemma 1.2. Let M™ be a complete Riemannian manifold. Let ¢ € M™. Suppose
that the length of a shortest geodesic loop l,(M™) based at q is greater than L. Then,
given any piecewise differentiable loop v : [0,1] — M™ of length < L such that
¥(0) = (1) = q, there exists a length decreasing path homotopy connecting this
curve with q that depends continuously on the initial loop ~.

Lemma 2.4. Let M™ be a complete Riemannian manifold, p € M™. Let e, 7,0 be
positive numbers, such that ¢ < 155=. Define € by the equation

64" (k(n — 1)&’"ll +20+4371) =¢,
where k(n—1) = 27" n!, and T is sufficiently small for & to exist and to be positive.
Suppose that given t > 5, there ezists an (n — 1)-dimensional submanifold Z that

lies within the o-tubular neighborhood of the geodesic sphere Sy(p) centered at p of
radius t, such that

(1) Z does not bound in M™ — p;

(2) vol(Z) < €. Then there ezists a geodesic loop of length at most € based at a
distance t from the point p.

The topology of spaces of polygons
Michael Farber and Viktor Fromm.
Trans. Amer. Math. Soc. 365 (2013), 3097-3114

Definition 1.1. A length vector £ is called generic if there is no subset J C
{1,...,n} so that ) I; = 3" I;.
JEJ i¢J

Theorem 1.3. Let £,£ € RY be two generic length vectors and let d > 3. The
following conditions are equivalent:

(a) The manifolds E;(£) and E4(£') are O(d)-equivariantly diffeomorphic.

(b) The cohomology rings H*(E4(£); Zy) and H*(E4(£'); Z,) are isomorphic as
graded Tings.

(¢) The rings H9=V*(E4(£); Zy) and H=V*(E4(¢); Zy) are isomorphic.

(d) For some permutation o : {1,...,n} = {1,...,n}, the length vectors £ and
o(¢') lie in the same chamber.

Proposition 2.2. Let M be a smooth compact manifold, possibly with boundary.
Let f: M — R be a smooth function which is nondegenerate in the sense of Bott.
If OM # 0 we will additionally assume that M coincides with the set of points
where f achieves its mazimum and df # 0 on OM. Suppose that for some k > 2,
each connected critical submanifold C C M of f is k-lacunary (see Definition 2.1)
and the Morse-Bott index ind¢(C) of C is divisible by k. Then f is perfect, i.e.

(2) H.(M;Z)~ @ Hoing o) (C;Z),
CCCrit(f)
where C' runs over the connected components of the set of critical points of f.
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Proposition 2.3. Suppose that in addition to the assumptions of Proposition 2.2,
for each critical submanifold C C M of f we are given a closed submanifold W C

M and a finite collection of closed submanifolds We = {Z; Z C W} such that the
following conditions are satisfied:

(1) C c W¢ and dim We = ind¢(C) + dim C.

(2) The function f|W¢ is nondegenerate in the sense of Bott and achieves its
mazimum on C.

(3) Each Z € Wc is transversal to C as a submanifold of We.

(4) The set of homology classes [Z N C)| € H.(C;Z,), for all Z € W¢, forms a
basis of H.(C;Zs).

Then the set of the homology classes [Z] € H.(M;Z,), for all Z € W¢ and for all
critical submanifolds C C Crit(f), forms a basis of H.(M;Zs).

Proposition 2.4. Suppose that in addition to the assumptions of Proposition 2.3,
each of the submanifolds Z € W is oriented. Fiz an orientation of the normal
bundle to C in W. Then each intersection Z N C is canonically oriented and the
symbol [Z N C| € H,(C;Z) will denote the homology class of C realized by Z N C.
Assume that for each critical submanifold C C Crit(f) the collection of classes
[ZNC) € Hi(C;Z), where Z € Wc, forms a free basis of Hi.(C;Z). Then the
collection of the homology classes [Z) € H.(M;Z), for all Z € W¢ and for all
critical submanifolds C C Crit(f), forms a free basis of H,(M;Z).

Proposition 3.1. A vector £ € R% is a regular value of F|Q if and only if £ is
generic, i.e. y . €l; # 0 for e, = £1. Thus, for a generic £ € R‘; the preimage
F~1(£) = E;(£) is a smooth closed manifold of dimension d(n —1) —n.

The American Mathematical Monthly

Euler-Boole Summation Revisited
Author(s): Jonathan M. Borwein, Neil J. Calkin and Dante Manna
Source: The American Mathematical Monthly, Vol. 116, No. 5 (May, 2009), pp. 387-412

Proposition 2.1. For each k € N, let P, := [Zfzo a;x' : a; € R} = R**'. Then for
alln € N, given A € Py there is a unique B € Py such that S,(B) = A.

Proposition 2.2. Let g be a probability density function whose absolute moments ex-
ist. For all h € P, there is a unique f € Py so that Sg(f) = h.
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Theorem 2.3. For each n in Ny, let P§(x) be the Strodt polynomial associated with a
given density g(x); that is, for all x € R, P£(x) is defined implicitly by the relation

Se(PE(x)) =x" foralln € Ny, 21)

where S, is a Strodt operator. Then

%Pf(x) =nP? (x) forallneN. (22)

Corollary 3.1. For each positive integer k, if a degree-n polynomial B® (x) satisfies
SP[BP(x)] = x" forn € Ny, (41)
A Proof of the Cayley-Hamilton Theorem

Author(s): Chris Bernhardt
Source: The American Mathematical Monthly, Vol. 116, No. 5 (May, 2009), pp. 456-457

Theorem 1. Let A € M(n, n) with characteristic polynomial
det(t] — A) =cot" + 11" " +cot" 2+ -+ Cp.
Then
A" + A" + A" P+ el =0

A New Constructive Proof of the Malgrange-Ehrenpreis Theorem
Author(s): Peter Wagner
Source: The American Mathematical Monthly, Vol. 116, No. 5 (May, 2009), pp. 457-462

Lemma 1. If Ay, ..., A, € C are pairwise different, then the unique solution of the
linear system of equations

7 0, ifk=0,....m-—1,
arxk=1{" .

’

is given by aj = [Ti_o 4z (}j — 20)7".
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Proposition 1. Let P(§) = )_,, ., Ca&® € C[£]\ {0} be a not identically vanishing
polynomial on R" of degree m. If n € R" with P, (n) # 0, the real numbers Ay, . .., Ap

are pairwise different, and a; = [[;_o,4;(Aj — M) ™", then

[ PGETA n))
A,nx]: J
=B (20) >, (P(l$+)~,n)

Jj=0

is a fundamental solution of P(9), i.e., P(3)E = é.

Curves in Cages: An Algebro-Geometric Zoo

Author(s): Gabriel Katz
Source: The American Mathematical Monthly, Vol. 113, No. 9 (Nov., 2006), pp. 777-791

Theorem 2.3 (Cage Theorem for Cubics). Any cubic curve C that passes through
eight nodes of a (3 x 3)-cage must pass through the ninth node.

Theorem 3.1 (Cage Theorem for Plane Curves).
1. If a curve in P? of degree d passes through a supra-quasi-triangular set A of
nodes of a (d x e)-cage with d > e, then it passes through all the nodes of the

cage.
2. No curve of degree less than e can pass through a quasi-triangular set of nodes

ofa (d x e)-cage whend > e.

A Short Proof for the Krull Dimension of a Polynomial Ring

Author(s): Thierry Coquand and Henri Lombardi
Source: The American Mathematical Monthly, Vol. 112, No. 9 (Nov., 2005), pp. 826-829

Theorem 1. Let R be a commutative ring, and let € be a nonnegative integer. The
following statements are equivalent:

1. The Krull dimension of R is at most ¢.
2. For each x in R the Krull dimension of Ry, is at most € — 1.

Corollary 2. Let ¢ be a nonnegative integer. The Krull dimension of R is at most € if
and only if for any given xy, ..., x; in R there exist ay, ...,a; in R and my, ..., my in
N such that

x(’)""( "(x;"((l+al‘x()+"‘)+a()X())=0. (1)

Corollary 3. Let K be a field, and let R be a commutative K -algebra. If any sequence

X0, ..., X¢ in R is algebraically dependent over K, then the Krull dimension of R is at

most £.
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Zeitschrift fur angewandte Mathematik und Physik

Lp-convergence rates to nonlinear diffusion waves for quasilinear equations with nonlinear
dampingAuthor(s): Shifeng Geng and Lina Zhang
Z. Angew. Math. Phys. 66 (2015), 31-50

In this paper, we consider the following model of hyperbolic equations with nonlinear dampin
{Ut - (h(v)p):c =0,
pe +o(v)z = f(v)p,
where ¢’(v) < 0,h(v) > 0, f(v) < 0 and v > 0. This system derived in [16,17] describes the p:

of heat wave for rigid solids at very low temperature, below about 20 K.
In [7], Li and Saxton proved that the Cauchy problem (1.1) with

(v,p)(z,O) = (vOap())(m) - (v:i:’O)a

Theorem 1.2. Assume that ¢ € C*,0’ < 0,h € C?,h > 0,f € C% f < 0 and (Vo(z), 20(z)) € (H® x
H?)(R). Then, there exists a § > 0 such that if |Vo||s + ||z0||2 + |v4 — v—| £ 8, the Cauchy problem (1.1)
and (1.2) admits a unique global smooth solution (v,p) which satisfies
|OkatV(t)| < Co(L+t) 5, 0<k+1<3,0<1<2,
) (1.18)
187V (el < Ca(1+ )%,

Furthermore, under the additional assumption that (Vo, z0) € (L' x L)(R), the following L*(2 < p < o0)
decay rates are true

195 (v = B)(®)]| 2 < C8(1+1)~2(=3) =" log(1 + 1), (1.19)

185t — P)(B)llzr < €81 +)~2(73)"F log(1 + 1), (1.20)
foranyk <2 ifp=2andk <1 if (2,00].



